early-access version 2519

This commit is contained in:
pineappleEA 2022-02-27 23:27:57 +01:00
parent e13f73efb6
commit 09cf05ab91
38 changed files with 2107 additions and 1239 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 2516. This is the source code for early-access 2519.
## Legal Notice ## Legal Notice

View file

@ -58,6 +58,7 @@ add_library(dynarmic
common/memory_pool.h common/memory_pool.h
common/safe_ops.h common/safe_ops.h
common/scope_exit.h common/scope_exit.h
common/spin_lock.h
common/string_util.h common/string_util.h
common/u128.cpp common/u128.cpp
common/u128.h common/u128.h
@ -281,6 +282,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_crc32.cpp backend/x64/emit_x64_crc32.cpp
backend/x64/emit_x64_data_processing.cpp backend/x64/emit_x64_data_processing.cpp
backend/x64/emit_x64_floating_point.cpp backend/x64/emit_x64_floating_point.cpp
backend/x64/emit_x64_memory.h
backend/x64/emit_x64_packed.cpp backend/x64/emit_x64_packed.cpp
backend/x64/emit_x64_saturation.cpp backend/x64/emit_x64_saturation.cpp
backend/x64/emit_x64_sm4.cpp backend/x64/emit_x64_sm4.cpp
@ -289,6 +291,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/emit_x64_vector_saturation.cpp backend/x64/emit_x64_vector_saturation.cpp
backend/x64/exception_handler.h backend/x64/exception_handler.h
backend/x64/exclusive_monitor.cpp backend/x64/exclusive_monitor.cpp
backend/x64/exclusive_monitor_friend.h
backend/x64/host_feature.h backend/x64/host_feature.h
backend/x64/hostloc.cpp backend/x64/hostloc.cpp
backend/x64/hostloc.h backend/x64/hostloc.h
@ -299,12 +302,15 @@ if (ARCHITECTURE STREQUAL "x86_64")
backend/x64/reg_alloc.cpp backend/x64/reg_alloc.cpp
backend/x64/reg_alloc.h backend/x64/reg_alloc.h
backend/x64/stack_layout.h backend/x64/stack_layout.h
common/spin_lock_x64.cpp
common/spin_lock_x64.h
) )
if ("A32" IN_LIST DYNARMIC_FRONTENDS) if ("A32" IN_LIST DYNARMIC_FRONTENDS)
target_sources(dynarmic PRIVATE target_sources(dynarmic PRIVATE
backend/x64/a32_emit_x64.cpp backend/x64/a32_emit_x64.cpp
backend/x64/a32_emit_x64.h backend/x64/a32_emit_x64.h
backend/x64/a32_emit_x64_memory.cpp
backend/x64/a32_interface.cpp backend/x64/a32_interface.cpp
backend/x64/a32_jitstate.cpp backend/x64/a32_jitstate.cpp
backend/x64/a32_jitstate.h backend/x64/a32_jitstate.h
@ -315,6 +321,7 @@ if (ARCHITECTURE STREQUAL "x86_64")
target_sources(dynarmic PRIVATE target_sources(dynarmic PRIVATE
backend/x64/a64_emit_x64.cpp backend/x64/a64_emit_x64.cpp
backend/x64/a64_emit_x64.h backend/x64/a64_emit_x64.h
backend/x64/a64_emit_x64_memory.cpp
backend/x64/a64_interface.cpp backend/x64/a64_interface.cpp
backend/x64/a64_jitstate.cpp backend/x64/a64_jitstate.cpp
backend/x64/a64_jitstate.h backend/x64/a64_jitstate.h

View file

@ -11,7 +11,6 @@
#include <fmt/format.h> #include <fmt/format.h>
#include <fmt/ostream.h> #include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
#include "dynarmic/backend/x64/a32_jitstate.h" #include "dynarmic/backend/x64/a32_jitstate.h"
#include "dynarmic/backend/x64/abi.h" #include "dynarmic/backend/x64/abi.h"
@ -26,11 +25,9 @@
#include "dynarmic/common/common_types.h" #include "dynarmic/common/common_types.h"
#include "dynarmic/common/scope_exit.h" #include "dynarmic/common/scope_exit.h"
#include "dynarmic/common/variant_util.h" #include "dynarmic/common/variant_util.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/frontend/A32/a32_location_descriptor.h" #include "dynarmic/frontend/A32/a32_location_descriptor.h"
#include "dynarmic/frontend/A32/a32_types.h" #include "dynarmic/frontend/A32/a32_types.h"
#include "dynarmic/interface/A32/coprocessor.h" #include "dynarmic/interface/A32/coprocessor.h"
#include "dynarmic/interface/exclusive_monitor.h"
#include "dynarmic/ir/basic_block.h" #include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/microinstruction.h" #include "dynarmic/ir/microinstruction.h"
#include "dynarmic/ir/opcodes.h" #include "dynarmic/ir/opcodes.h"
@ -198,67 +195,6 @@ void A32EmitX64::ClearFastDispatchTable() {
} }
} }
void A32EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
}
}
}
void A32EmitX64::GenTerminalHandlers() { void A32EmitX64::GenTerminalHandlers() {
// PC ends up in ebp, location_descriptor ends up in rbx // PC ends up in ebp, location_descriptor ends up in rbx
const auto calculate_location_descriptor = [this] { const auto calculate_location_descriptor = [this] {
@ -875,372 +811,6 @@ void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], value); code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], value);
} }
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
std::optional<A32EmitX64::DoNotFastmemMarker> A32EmitX64::ShouldFastmem(A32EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg32 vaddr, Xbyak::Reg32 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg32 tmp = ctx.conf.absolute_offset_page_table ? page.cvt32() : ctx.reg_alloc.ScratchGpr().cvt32();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr.cvt32(), tmp);
// TODO: This code assumes vaddr has been zext from 32-bits to 64-bits.
code.mov(tmp, vaddr.cvt32());
code.shr(tmp, static_cast<int>(page_bits));
code.mov(page, qword[r14 + tmp.cvt64() * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr.cvt32());
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp.cvt64();
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // anonymous namespace
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryRead(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
ctx.reg_alloc.DefineValue(inst, value);
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryWrite(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A32::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A32::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A32::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A32::UserCallbacks::MemoryWrite64>(ctx, inst);
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
code.L(end);
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
static void EmitCoprocessorException() { static void EmitCoprocessorException() {
ASSERT_FALSE("Should raise coproc exception here"); ASSERT_FALSE("Should raise coproc exception here");
} }

View file

@ -73,6 +73,7 @@ protected:
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks; std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks; std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks(); void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint; const void* terminal_handler_pop_rsb_hint;
@ -98,6 +99,7 @@ protected:
u64 resume_rip; u64 resume_rip;
u64 callback; u64 callback;
DoNotFastmemMarker marker; DoNotFastmemMarker marker;
bool compile;
}; };
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info; tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem; std::set<DoNotFastmemMarker> do_not_fastmem;
@ -113,6 +115,10 @@ protected:
void ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst); void ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback> template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst); void ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters // Terminal instruction emitters
void EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location); void EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location);

View file

@ -0,0 +1,672 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <array>
#include <initializer_list>
#include <tuple>
#include <utility>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/a32_emit_x64.h"
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/devirtualize.h"
#include "dynarmic/backend/x64/emit_x64_memory.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/backend/x64/perf_map.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic::Backend::X64 {
using namespace Xbyak::util;
void A32EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> exclusive_write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWriteExclusive64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : exclusive_write_callbacks) {
code.align();
exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
code.mov(code.ABI_PARAM4, rax);
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLoc::RAX);
code.ret();
PerfMapRegister(exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_exclusive_write_fallback_{}", bitsize));
}
}
}
}
std::optional<A32EmitX64::DoNotFastmemMarker> A32EmitX64::ShouldFastmem(A32EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (iter->second.compile) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
return FakeCall{
.call_rip = iter->second.callback,
.ret_rip = iter->second.resume_rip,
};
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg32 vaddr, Xbyak::Reg32 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg32 tmp = ctx.conf.absolute_offset_page_table ? page.cvt32() : ctx.reg_alloc.ScratchGpr().cvt32();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr.cvt32(), tmp);
// TODO: This code assumes vaddr has been zext from 32-bits to 64-bits.
code.mov(tmp, vaddr.cvt32());
code.shr(tmp, static_cast<int>(page_bits));
code.mov(page, qword[r14 + tmp.cvt64() * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr.cvt32());
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp.cvt64();
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // anonymous namespace
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryRead(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
ctx.reg_alloc.DefineValue(inst, value);
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::EmitMemoryWrite(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
return;
}
// Use page table
ASSERT(conf.page_table);
Xbyak::Label abort, end;
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A32::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A32::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A32::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A32::UserCallbacks::MemoryWrite64>(ctx, inst);
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
}
template<size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
code.L(end);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveReadMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(qword[tmp], vaddr);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
Xbyak::Label end;
const auto src_ptr = r13 + vaddr;
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.L(end);
} else {
code.call(wrapped_fn);
}
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemoryInline(A32EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
ExclusiveWriteMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto fallback_fn = exclusive_write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax);
Xbyak::Label end;
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(status, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end, code.T_NEAR);
code.cmp(qword[tmp], vaddr);
code.jne(end, code.T_NEAR);
EmitExclusiveTestAndClear(code, conf, vaddr, tmp, rax);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(tmp, Common::BitCast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitReadMemoryMov<bitsize>(code, rax, tmp);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
const auto dest_ptr = r13 + vaddr;
const auto location = code.getCurr();
switch (bitsize) {
case 8:
code.lock();
code.cmpxchg(code.byte[dest_ptr], value.cvt8());
break;
case 16:
code.lock();
code.cmpxchg(word[dest_ptr], value.cvt16());
break;
case 32:
code.lock();
code.cmpxchg(dword[dest_ptr], value.cvt32());
break;
case 64:
code.lock();
code.cmpxchg(qword[dest_ptr], value.cvt64());
break;
default:
UNREACHABLE();
}
code.setnz(status.cvt8());
code.SwitchToFarCode();
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(fallback_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
} else {
code.call(fallback_fn);
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
}
code.L(end);
EmitExclusiveUnlock(code, conf, tmp, eax);
ctx.reg_alloc.DefineValue(inst, status);
}
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
} else {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
} else {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
} else {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveReadMemoryInline<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
} else {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
} else {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
} else {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
} else {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
if (conf.fastmem_exclusive_access) {
ExclusiveWriteMemoryInline<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
} else {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
}
} // namespace Dynarmic::Backend::X64

View file

@ -5,8 +5,6 @@
#include "dynarmic/backend/x64/a64_emit_x64.h" #include "dynarmic/backend/x64/a64_emit_x64.h"
#include <initializer_list>
#include <fmt/format.h> #include <fmt/format.h>
#include <fmt/ostream.h> #include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h> #include <mp/traits/integer_of_size.h>
@ -23,10 +21,8 @@
#include "dynarmic/common/bit_util.h" #include "dynarmic/common/bit_util.h"
#include "dynarmic/common/common_types.h" #include "dynarmic/common/common_types.h"
#include "dynarmic/common/scope_exit.h" #include "dynarmic/common/scope_exit.h"
#include "dynarmic/common/x64_disassemble.h"
#include "dynarmic/frontend/A64/a64_location_descriptor.h" #include "dynarmic/frontend/A64/a64_location_descriptor.h"
#include "dynarmic/frontend/A64/a64_types.h" #include "dynarmic/frontend/A64/a64_types.h"
#include "dynarmic/interface/exclusive_monitor.h"
#include "dynarmic/ir/basic_block.h" #include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/cond.h" #include "dynarmic/ir/cond.h"
#include "dynarmic/ir/microinstruction.h" #include "dynarmic/ir/microinstruction.h"
@ -156,155 +152,6 @@ void A64EmitX64::ClearFastDispatchTable() {
} }
} }
void A64EmitX64::GenMemory128Accessors() {
code.align();
memory_read_128 = code.getCurr<void (*)()>();
#ifdef _WIN32
Devirtualize<&A64::UserCallbacks::MemoryRead128>(conf.callbacks).EmitCallWithReturnPointer(code, [&](Xbyak::Reg64 return_value_ptr, [[maybe_unused]] RegList args) {
code.mov(code.ABI_PARAM3, code.ABI_PARAM2);
code.sub(rsp, 8 + 16 + ABI_SHADOW_SPACE);
code.lea(return_value_ptr, ptr[rsp + ABI_SHADOW_SPACE]);
});
code.movups(xmm1, xword[code.ABI_RETURN]);
code.add(rsp, 8 + 16 + ABI_SHADOW_SPACE);
#else
code.sub(rsp, 8);
Devirtualize<&A64::UserCallbacks::MemoryRead128>(conf.callbacks).EmitCall(code);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(xmm1, code.ABI_RETURN);
code.pinsrq(xmm1, code.ABI_RETURN2, 1);
} else {
code.movq(xmm1, code.ABI_RETURN);
code.movq(xmm2, code.ABI_RETURN2);
code.punpcklqdq(xmm1, xmm2);
}
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_read_128, code.getCurr(), "a64_memory_read_128");
code.align();
memory_write_128 = code.getCurr<void (*)()>();
#ifdef _WIN32
code.sub(rsp, 8 + 16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
Devirtualize<&A64::UserCallbacks::MemoryWrite128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8 + 16 + ABI_SHADOW_SPACE);
#else
code.sub(rsp, 8);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(code.ABI_PARAM3, xmm1);
code.pextrq(code.ABI_PARAM4, xmm1, 1);
} else {
code.movq(code.ABI_PARAM3, xmm1);
code.punpckhqdq(xmm1, xmm1);
code.movq(code.ABI_PARAM4, xmm1);
}
Devirtualize<&A64::UserCallbacks::MemoryWrite128>(conf.callbacks).EmitCall(code);
code.add(rsp, 8);
#endif
code.ret();
PerfMapRegister(memory_read_128, code.getCurr(), "a64_memory_write_128");
}
void A64EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A64::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A64::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A64::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A64::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A64::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A64::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A64::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
if (vaddr_idx == 4 || vaddr_idx == 15) {
continue;
}
for (int value_idx : idxes) {
code.align();
read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
code.call(memory_read_128);
if (value_idx != 1) {
code.movaps(Xbyak::Xmm{value_idx}, xmm1);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_read_fallback_128");
code.align();
write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
if (value_idx != 1) {
code.movaps(xmm1, Xbyak::Xmm{value_idx});
}
code.call(memory_write_128);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(128, vaddr_idx, value_idx)], code.getCurr(), "a64_write_fallback_128");
if (value_idx == 4 || value_idx == 15) {
continue;
}
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void (*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a64_write_fallback_{}", bitsize));
}
}
}
}
void A64EmitX64::GenTerminalHandlers() { void A64EmitX64::GenTerminalHandlers() {
// PC ends up in rbp, location_descriptor ends up in rbx // PC ends up in rbp, location_descriptor ends up in rbx
const auto calculate_location_descriptor = [this] { const auto calculate_location_descriptor = [this] {
@ -742,600 +589,6 @@ void A64EmitX64::EmitA64SetTPIDR(A64EmitContext& ctx, IR::Inst* inst) {
} }
} }
void A64EmitX64::EmitA64ClearExclusive(A64EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
}
std::optional<A64EmitX64::DoNotFastmemMarker> A64EmitX64::ShouldFastmem(A64EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A64EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (conf.recompile_on_fastmem_failure) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A64EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr, Xbyak::Reg64 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
case 128:
return 0b1111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A64EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const size_t valid_page_index_bits = ctx.conf.page_table_address_space_bits - page_bits;
const size_t unused_top_bits = 64 - ctx.conf.page_table_address_space_bits;
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp = ctx.conf.absolute_offset_page_table ? page : ctx.reg_alloc.ScratchGpr();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr, tmp);
if (unused_top_bits == 0) {
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
} else if (ctx.conf.silently_mirror_page_table) {
if (valid_page_index_bits >= 32) {
if (code.HasHostFeature(HostFeature::BMI2)) {
const Xbyak::Reg64 bit_count = ctx.reg_alloc.ScratchGpr();
code.mov(bit_count, unused_top_bits);
code.bzhi(tmp, vaddr, bit_count);
code.shr(tmp, int(page_bits));
ctx.reg_alloc.Release(bit_count);
} else {
code.mov(tmp, vaddr);
code.shl(tmp, int(unused_top_bits));
code.shr(tmp, int(unused_top_bits + page_bits));
}
} else {
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
code.and_(tmp, u32((1 << valid_page_index_bits) - 1));
}
} else {
ASSERT(valid_page_index_bits < 32);
code.mov(tmp, vaddr);
code.shr(tmp, int(page_bits));
code.test(tmp, u32(-(1 << valid_page_index_bits)));
code.jnz(abort, code.T_NEAR);
}
code.mov(page, qword[r14 + tmp * sizeof(void*)]);
if (ctx.conf.page_table_pointer_mask_bits == 0) {
code.test(page, page);
} else {
code.and_(page, ~u32(0) << ctx.conf.page_table_pointer_mask_bits);
}
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr);
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp;
}
Xbyak::RegExp EmitFastmemVAddr(BlockOfCode& code, A64EmitContext& ctx, Xbyak::Label& abort, Xbyak::Reg64 vaddr, bool& require_abort_handling) {
const size_t unused_top_bits = 64 - ctx.conf.fastmem_address_space_bits;
if (unused_top_bits == 0) {
return r13 + vaddr;
} else if (ctx.conf.silently_mirror_fastmem) {
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
if (unused_top_bits < 32) {
code.mov(tmp, vaddr);
code.shl(tmp, int(unused_top_bits));
code.shr(tmp, int(unused_top_bits));
} else if (unused_top_bits == 32) {
code.mov(tmp.cvt32(), vaddr.cvt32());
} else {
code.mov(tmp.cvt32(), vaddr.cvt32());
code.and_(tmp, u32((1 << ctx.conf.fastmem_address_space_bits) - 1));
}
return r13 + tmp;
} else {
if (ctx.conf.fastmem_address_space_bits < 32) {
code.test(vaddr, u32(-(1 << ctx.conf.fastmem_address_space_bits)));
code.jnz(abort, code.T_NEAR);
require_abort_handling = true;
} else {
// TODO: Consider having TEST as above but coalesce 64-bit constant in register allocator
Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
code.mov(tmp, vaddr);
code.shr(tmp, int(ctx.conf.fastmem_address_space_bits));
code.jnz(abort, code.T_NEAR);
require_abort_handling = true;
}
return r13 + vaddr;
}
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // namespace
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitMemoryRead(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true;
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitMemoryWrite(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
require_abort_handling = true;
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
}
void A64EmitX64::EmitA64ReadMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryRead<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A64EmitX64::EmitA64ReadMemory128(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
code.CallFunction(memory_read_128);
ctx.reg_alloc.DefineValue(inst, xmm1);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm value = ctx.reg_alloc.ScratchXmm();
const auto wrapped_fn = read_fallbacks[std::make_tuple(128, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto src_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
code.movups(value, xword[src_ptr]);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, 128, abort, vaddr);
require_abort_handling = true;
code.movups(value, xword[src_ptr]);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
ctx.reg_alloc.DefineValue(inst, value);
}
void A64EmitX64::EmitA64WriteMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<8, &A64::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<16, &A64::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<32, &A64::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitMemoryWrite<64, &A64::UserCallbacks::MemoryWrite64>(ctx, inst);
}
void A64EmitX64::EmitA64WriteMemory128(A64EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.Use(args[1], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.CallFunction(memory_write_128);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm value = ctx.reg_alloc.UseXmm(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(128, vaddr.getIdx(), value.getIdx())];
Xbyak::Label abort, end;
bool require_abort_handling = false;
if (fastmem_marker) {
// Use fastmem
const auto dest_ptr = EmitFastmemVAddr(code, ctx, abort, vaddr, require_abort_handling);
const auto location = code.getCurr();
code.movups(xword[dest_ptr], value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*fastmem_marker,
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, 128, abort, vaddr);
require_abort_handling = true;
code.movups(xword[dest_ptr], value);
}
code.L(end);
if (require_abort_handling) {
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if constexpr (bitsize != 128) {
using T = mp::unsigned_integer_of_size<bitsize>;
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
} else {
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, A64::Vector& ret) {
ret = conf.global_monitor->ReadAndMark<A64::Vector>(conf.processor_id, vaddr, [&]() -> A64::Vector {
return (conf.callbacks->*callback)(vaddr);
});
});
code.movups(result, xword[rsp + ABI_SHADOW_SPACE]);
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, result);
}
}
void A64EmitX64::EmitA64ExclusiveReadMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<8, &A64::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<16, &A64::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<32, &A64::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<64, &A64::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveReadMemory128(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveReadMemory<128, &A64::UserCallbacks::MemoryRead128>(ctx, inst);
}
template<std::size_t bitsize, auto callback>
void A64EmitX64::EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if constexpr (bitsize != 128) {
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
} else {
ctx.reg_alloc.Use(args[0], ABI_PARAM2);
ctx.reg_alloc.Use(args[1], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(inst);
}
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A64JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
if constexpr (bitsize != 128) {
using T = mp::unsigned_integer_of_size<bitsize>;
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
} else {
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
code.CallLambda(
[](A64::UserConfig& conf, u64 vaddr, A64::Vector& value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<A64::Vector>(conf.processor_id, vaddr,
[&](A64::Vector expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
}
code.L(end);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory8(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<8, &A64::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory16(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<16, &A64::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory32(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<32, &A64::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory64(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<64, &A64::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
void A64EmitX64::EmitA64ExclusiveWriteMemory128(A64EmitContext& ctx, IR::Inst* inst) {
EmitExclusiveWriteMemory<128, &A64::UserCallbacks::MemoryWriteExclusive128>(ctx, inst);
}
std::string A64EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const { std::string A64EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const {
const A64::LocationDescriptor descriptor{ir_descriptor}; const A64::LocationDescriptor descriptor{ir_descriptor};
return fmt::format("a64_{:016X}_fpcr{:08X}", return fmt::format("a64_{:016X}_fpcr{:08X}",

View file

@ -7,6 +7,7 @@
#include <array> #include <array>
#include <map> #include <map>
#include <optional>
#include <tuple> #include <tuple>
#include "dynarmic/backend/x64/a64_jitstate.h" #include "dynarmic/backend/x64/a64_jitstate.h"
@ -67,10 +68,12 @@ protected:
void (*memory_read_128)(); void (*memory_read_128)();
void (*memory_write_128)(); void (*memory_write_128)();
void (*memory_exclusive_write_128)();
void GenMemory128Accessors(); void GenMemory128Accessors();
std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks; std::map<std::tuple<size_t, int, int>, void (*)()> read_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks; std::map<std::tuple<size_t, int, int>, void (*)()> write_fallbacks;
std::map<std::tuple<size_t, int, int>, void (*)()> exclusive_write_fallbacks;
void GenFastmemFallbacks(); void GenFastmemFallbacks();
const void* terminal_handler_pop_rsb_hint; const void* terminal_handler_pop_rsb_hint;
@ -97,6 +100,7 @@ protected:
u64 resume_rip; u64 resume_rip;
u64 callback; u64 callback;
DoNotFastmemMarker marker; DoNotFastmemMarker marker;
bool recompile;
}; };
tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info; tsl::robin_map<u64, FastmemPatchInfo> fastmem_patch_info;
std::set<DoNotFastmemMarker> do_not_fastmem; std::set<DoNotFastmemMarker> do_not_fastmem;
@ -112,6 +116,10 @@ protected:
void EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst); void EmitExclusiveReadMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback> template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst); void EmitExclusiveWriteMemory(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveReadMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
template<std::size_t bitsize, auto callback>
void EmitExclusiveWriteMemoryInline(A64EmitContext& ctx, IR::Inst* inst);
// Terminal instruction emitters // Terminal instruction emitters
void EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location, bool is_single_step) override; void EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location, bool is_single_step) override;

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,62 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/a64_emit_x64.h"
#include "dynarmic/backend/x64/exclusive_monitor_friend.h"
#include "dynarmic/common/spin_lock_x64.h"
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic::Backend::X64 {
namespace {
using namespace Xbyak::util;
template<typename UserConfig>
void EmitExclusiveLock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockLock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveUnlock(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 pointer, Xbyak::Reg32 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorLockPointer(conf.global_monitor)));
EmitSpinLockUnlock(code, pointer, tmp);
}
template<typename UserConfig>
void EmitExclusiveTestAndClear(BlockOfCode& code, const UserConfig& conf, Xbyak::Reg64 vaddr, Xbyak::Reg64 pointer, Xbyak::Reg64 tmp) {
if (conf.HasOptimization(OptimizationFlag::Unsafe_IgnoreGlobalMonitor)) {
return;
}
code.mov(tmp, 0xDEAD'DEAD'DEAD'DEAD);
const size_t processor_count = GetExclusiveMonitorProcessorCount(conf.global_monitor);
for (size_t processor_index = 0; processor_index < processor_count; processor_index++) {
if (processor_index == conf.processor_id) {
continue;
}
Xbyak::Label ok;
code.mov(pointer, Common::BitCast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, processor_index)));
code.cmp(qword[pointer], vaddr);
code.jne(ok);
code.mov(qword[pointer], tmp);
code.L(ok);
}
}
} // namespace
} // namespace Dynarmic::Backend::X64

View file

@ -21,11 +21,11 @@ size_t ExclusiveMonitor::GetProcessorCount() const {
} }
void ExclusiveMonitor::Lock() { void ExclusiveMonitor::Lock() {
while (is_locked.test_and_set(std::memory_order_acquire)) {} lock.Lock();
} }
void ExclusiveMonitor::Unlock() { void ExclusiveMonitor::Unlock() {
is_locked.clear(std::memory_order_release); lock.Unlock();
} }
bool ExclusiveMonitor::CheckAndClear(size_t processor_id, VAddr address) { bool ExclusiveMonitor::CheckAndClear(size_t processor_id, VAddr address) {

View file

@ -0,0 +1,28 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include "dynarmic/interface/exclusive_monitor.h"
namespace Dynarmic {
inline volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor* monitor) {
return &monitor->lock.storage;
}
inline size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor* monitor) {
return monitor->exclusive_addresses.size();
}
inline VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_addresses.data() + index;
}
inline Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor* monitor, size_t index) {
return monitor->exclusive_values.data() + index;
}
} // namespace Dynarmic

View file

@ -0,0 +1,17 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
namespace Dynarmic {
struct SpinLock {
void Lock();
void Unlock();
volatile int storage;
};
} // namespace Dynarmic

View file

@ -0,0 +1,70 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/hostloc.h"
#include "dynarmic/common/spin_lock.h"
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
Xbyak::Label start, loop;
code.jmp(start);
code.L(loop);
code.pause();
code.L(start);
code.mov(tmp, 1);
code.lock();
code.xchg(code.dword[ptr], tmp);
code.test(tmp, tmp);
code.jnz(loop);
}
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp) {
code.xor_(tmp, tmp);
code.xchg(code.dword[ptr], tmp);
code.mfence();
}
namespace {
struct SpinLockImpl {
SpinLockImpl();
Xbyak::CodeGenerator code;
void (*lock)(volatile int*);
void (*unlock)(volatile int*);
};
SpinLockImpl impl;
SpinLockImpl::SpinLockImpl() {
const Xbyak::Reg64 ABI_PARAM1 = Backend::X64::HostLocToReg64(Backend::X64::ABI_PARAM1);
code.align();
lock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockLock(code, ABI_PARAM1, code.eax);
code.ret();
code.align();
unlock = code.getCurr<void (*)(volatile int*)>();
EmitSpinLockUnlock(code, ABI_PARAM1, code.eax);
code.ret();
}
} // namespace
void SpinLock::Lock() {
impl.lock(&storage);
}
void SpinLock::Unlock() {
impl.unlock(&storage);
}
} // namespace Dynarmic

View file

@ -0,0 +1,15 @@
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#pragma once
#include <xbyak/xbyak.h>
namespace Dynarmic {
void EmitSpinLockLock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
void EmitSpinLockUnlock(Xbyak::CodeGenerator& code, Xbyak::Reg64 ptr, Xbyak::Reg32 tmp);
} // namespace Dynarmic

View file

@ -177,6 +177,15 @@ struct UserConfig {
/// accesses will hit the memory callbacks. /// accesses will hit the memory callbacks.
bool recompile_on_fastmem_failure = true; bool recompile_on_fastmem_failure = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
// Coprocessors // Coprocessors
std::array<std::shared_ptr<Coprocessor>, 16> coprocessors{}; std::array<std::shared_ptr<Coprocessor>, 16> coprocessors{};

View file

@ -254,6 +254,15 @@ struct UserConfig {
/// This is only used if fastmem_pointer is not nullptr. /// This is only used if fastmem_pointer is not nullptr.
bool silently_mirror_fastmem = true; bool silently_mirror_fastmem = true;
/// Determines if we should use the above fastmem_pointer for exclusive reads and
/// writes. On x64, dynarmic currently relies on x64 cmpxchg semantics which may not
/// provide fully accurate emulation.
bool fastmem_exclusive_access = false;
/// Determines if exclusive access instructions that pagefault should cause
/// recompilation of that block with fastmem disabled. Recompiled code will use memory
/// callbacks.
bool recompile_on_exclusive_fastmem_failure = true;
/// This option relates to translation. Generally when we run into an unpredictable /// This option relates to translation. Generally when we run into an unpredictable
/// instruction the ExceptionRaised callback is called. If this is true, we define /// instruction the ExceptionRaised callback is called. If this is true, we define
/// definite behaviour for some unpredictable instructions. /// definite behaviour for some unpredictable instructions.

View file

@ -12,6 +12,8 @@
#include <cstring> #include <cstring>
#include <vector> #include <vector>
#include <dynarmic/common/spin_lock.h>
namespace Dynarmic { namespace Dynarmic {
using VAddr = std::uint64_t; using VAddr = std::uint64_t;
@ -71,9 +73,14 @@ private:
void Lock(); void Lock();
void Unlock(); void Unlock();
friend volatile int* GetExclusiveMonitorLockPointer(ExclusiveMonitor*);
friend size_t GetExclusiveMonitorProcessorCount(ExclusiveMonitor*);
friend VAddr* GetExclusiveMonitorAddressPointer(ExclusiveMonitor*, size_t index);
friend Vector* GetExclusiveMonitorValuePointer(ExclusiveMonitor*, size_t index);
static constexpr VAddr RESERVATION_GRANULE_MASK = 0xFFFF'FFFF'FFFF'FFFFull; static constexpr VAddr RESERVATION_GRANULE_MASK = 0xFFFF'FFFF'FFFF'FFFFull;
static constexpr VAddr INVALID_EXCLUSIVE_ADDRESS = 0xDEAD'DEAD'DEAD'DEADull; static constexpr VAddr INVALID_EXCLUSIVE_ADDRESS = 0xDEAD'DEAD'DEAD'DEADull;
std::atomic_flag is_locked; SpinLock lock;
std::vector<VAddr> exclusive_addresses; std::vector<VAddr> exclusive_addresses;
std::vector<Vector> exclusive_values; std::vector<Vector> exclusive_values;
}; };

View file

@ -45,6 +45,10 @@ enum class OptimizationFlag : std::uint32_t {
/// This is an UNSAFE optimization that causes ASIMD floating-point instructions to be run with incorrect /// This is an UNSAFE optimization that causes ASIMD floating-point instructions to be run with incorrect
/// rounding modes. This may result in inaccurate results with all floating-point ASIMD instructions. /// rounding modes. This may result in inaccurate results with all floating-point ASIMD instructions.
Unsafe_IgnoreStandardFPCRValue = 0x00080000, Unsafe_IgnoreStandardFPCRValue = 0x00080000,
/// This is an UNSAFE optimization that causes the global monitor to be ignored. This may
/// result in unexpected behaviour in multithreaded scenarios, including but not limited
/// to data races and deadlocks.
Unsafe_IgnoreGlobalMonitor = 0x00100000,
}; };
constexpr OptimizationFlag no_optimizations = static_cast<OptimizationFlag>(0); constexpr OptimizationFlag no_optimizations = static_cast<OptimizationFlag>(0);

View file

@ -176,6 +176,7 @@ void RestoreGlobalState(bool is_powered_on) {
values.cpuopt_unsafe_ignore_standard_fpcr.SetGlobal(true); values.cpuopt_unsafe_ignore_standard_fpcr.SetGlobal(true);
values.cpuopt_unsafe_inaccurate_nan.SetGlobal(true); values.cpuopt_unsafe_inaccurate_nan.SetGlobal(true);
values.cpuopt_unsafe_fastmem_check.SetGlobal(true); values.cpuopt_unsafe_fastmem_check.SetGlobal(true);
values.cpuopt_unsafe_ignore_global_monitor.SetGlobal(true);
// Renderer // Renderer
values.renderer_backend.SetGlobal(true); values.renderer_backend.SetGlobal(true);

View file

@ -484,12 +484,15 @@ struct Values {
BasicSetting<bool> cpuopt_misc_ir{true, "cpuopt_misc_ir"}; BasicSetting<bool> cpuopt_misc_ir{true, "cpuopt_misc_ir"};
BasicSetting<bool> cpuopt_reduce_misalign_checks{true, "cpuopt_reduce_misalign_checks"}; BasicSetting<bool> cpuopt_reduce_misalign_checks{true, "cpuopt_reduce_misalign_checks"};
BasicSetting<bool> cpuopt_fastmem{true, "cpuopt_fastmem"}; BasicSetting<bool> cpuopt_fastmem{true, "cpuopt_fastmem"};
BasicSetting<bool> cpuopt_fastmem_exclusives{true, "cpuopt_fastmem_exclusives"};
BasicSetting<bool> cpuopt_recompile_exclusives{true, "cpuopt_recompile_exclusives"};
Setting<bool> cpuopt_unsafe_unfuse_fma{true, "cpuopt_unsafe_unfuse_fma"}; Setting<bool> cpuopt_unsafe_unfuse_fma{true, "cpuopt_unsafe_unfuse_fma"};
Setting<bool> cpuopt_unsafe_reduce_fp_error{true, "cpuopt_unsafe_reduce_fp_error"}; Setting<bool> cpuopt_unsafe_reduce_fp_error{true, "cpuopt_unsafe_reduce_fp_error"};
Setting<bool> cpuopt_unsafe_ignore_standard_fpcr{true, "cpuopt_unsafe_ignore_standard_fpcr"}; Setting<bool> cpuopt_unsafe_ignore_standard_fpcr{true, "cpuopt_unsafe_ignore_standard_fpcr"};
Setting<bool> cpuopt_unsafe_inaccurate_nan{true, "cpuopt_unsafe_inaccurate_nan"}; Setting<bool> cpuopt_unsafe_inaccurate_nan{true, "cpuopt_unsafe_inaccurate_nan"};
Setting<bool> cpuopt_unsafe_fastmem_check{true, "cpuopt_unsafe_fastmem_check"}; Setting<bool> cpuopt_unsafe_fastmem_check{true, "cpuopt_unsafe_fastmem_check"};
Setting<bool> cpuopt_unsafe_ignore_global_monitor{true, "cpuopt_unsafe_ignore_global_monitor"};
// Renderer // Renderer
RangedSetting<RendererBackend> renderer_backend{ RangedSetting<RendererBackend> renderer_backend{

View file

@ -137,6 +137,8 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
config.page_table_pointer_mask_bits = Common::PageTable::ATTRIBUTE_BITS; config.page_table_pointer_mask_bits = Common::PageTable::ATTRIBUTE_BITS;
config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128; config.detect_misaligned_access_via_page_table = 16 | 32 | 64 | 128;
config.only_detect_misalignment_via_page_table_on_page_boundary = true; config.only_detect_misalignment_via_page_table_on_page_boundary = true;
config.fastmem_exclusive_access = true;
config.recompile_on_exclusive_fastmem_failure = true;
// Multi-process state // Multi-process state
config.processor_id = core_index; config.processor_id = core_index;
@ -178,6 +180,12 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
if (!Settings::values.cpuopt_fastmem) { if (!Settings::values.cpuopt_fastmem) {
config.fastmem_pointer = nullptr; config.fastmem_pointer = nullptr;
} }
if (!Settings::values.cpuopt_fastmem_exclusives) {
config.fastmem_exclusive_access = false;
}
if (!Settings::values.cpuopt_recompile_exclusives) {
config.recompile_on_exclusive_fastmem_failure = false;
}
} }
// Unsafe optimizations // Unsafe optimizations
@ -195,6 +203,9 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
if (Settings::values.cpuopt_unsafe_inaccurate_nan) { if (Settings::values.cpuopt_unsafe_inaccurate_nan) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
} }
if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
} }
// Curated optimizations // Curated optimizations
@ -203,6 +214,7 @@ std::shared_ptr<Dynarmic::A32::Jit> ARM_Dynarmic_32::MakeJit(Common::PageTable*
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreStandardFPCRValue; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreStandardFPCRValue;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
} }
return std::make_unique<Dynarmic::A32::Jit>(config); return std::make_unique<Dynarmic::A32::Jit>(config);

View file

@ -185,6 +185,9 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
config.fastmem_pointer = page_table->fastmem_arena; config.fastmem_pointer = page_table->fastmem_arena;
config.fastmem_address_space_bits = address_space_bits; config.fastmem_address_space_bits = address_space_bits;
config.silently_mirror_fastmem = false; config.silently_mirror_fastmem = false;
config.fastmem_exclusive_access = true;
config.recompile_on_exclusive_fastmem_failure = true;
} }
// Multi-process state // Multi-process state
@ -237,6 +240,12 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
if (!Settings::values.cpuopt_fastmem) { if (!Settings::values.cpuopt_fastmem) {
config.fastmem_pointer = nullptr; config.fastmem_pointer = nullptr;
} }
if (!Settings::values.cpuopt_fastmem_exclusives) {
config.fastmem_exclusive_access = false;
}
if (!Settings::values.cpuopt_recompile_exclusives) {
config.recompile_on_exclusive_fastmem_failure = false;
}
} }
// Unsafe optimizations // Unsafe optimizations
@ -254,6 +263,9 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
if (Settings::values.cpuopt_unsafe_fastmem_check) { if (Settings::values.cpuopt_unsafe_fastmem_check) {
config.fastmem_address_space_bits = 64; config.fastmem_address_space_bits = 64;
} }
if (Settings::values.cpuopt_unsafe_ignore_global_monitor) {
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
}
} }
// Curated optimizations // Curated optimizations
@ -262,6 +274,7 @@ std::shared_ptr<Dynarmic::A64::Jit> ARM_Dynarmic_64::MakeJit(Common::PageTable*
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_UnfuseFMA;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN; config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_InaccurateNaN;
config.fastmem_address_space_bits = 64; config.fastmem_address_space_bits = 64;
config.optimizations |= Dynarmic::OptimizationFlag::Unsafe_IgnoreGlobalMonitor;
} }
return std::make_shared<Dynarmic::A64::Jit>(config); return std::make_shared<Dynarmic::A64::Jit>(config);

View file

@ -37,8 +37,8 @@ u128 DynarmicExclusiveMonitor::ExclusiveRead128(std::size_t core_index, VAddr ad
}); });
} }
void DynarmicExclusiveMonitor::ClearExclusive() { void DynarmicExclusiveMonitor::ClearExclusive(std::size_t core_index) {
monitor.Clear(); monitor.ClearProcessor(core_index);
} }
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) { bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {

View file

@ -29,7 +29,7 @@ public:
u32 ExclusiveRead32(std::size_t core_index, VAddr addr) override; u32 ExclusiveRead32(std::size_t core_index, VAddr addr) override;
u64 ExclusiveRead64(std::size_t core_index, VAddr addr) override; u64 ExclusiveRead64(std::size_t core_index, VAddr addr) override;
u128 ExclusiveRead128(std::size_t core_index, VAddr addr) override; u128 ExclusiveRead128(std::size_t core_index, VAddr addr) override;
void ClearExclusive() override; void ClearExclusive(std::size_t core_index) override;
bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override; bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) override;
bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override; bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) override;

View file

@ -23,7 +23,7 @@ public:
virtual u32 ExclusiveRead32(std::size_t core_index, VAddr addr) = 0; virtual u32 ExclusiveRead32(std::size_t core_index, VAddr addr) = 0;
virtual u64 ExclusiveRead64(std::size_t core_index, VAddr addr) = 0; virtual u64 ExclusiveRead64(std::size_t core_index, VAddr addr) = 0;
virtual u128 ExclusiveRead128(std::size_t core_index, VAddr addr) = 0; virtual u128 ExclusiveRead128(std::size_t core_index, VAddr addr) = 0;
virtual void ClearExclusive() = 0; virtual void ClearExclusive(std::size_t core_index) = 0;
virtual bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) = 0; virtual bool ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) = 0;
virtual bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) = 0; virtual bool ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) = 0;

View file

@ -49,7 +49,7 @@ bool DecrementIfLessThan(Core::System& system, s32* out, VAddr address, s32 valu
} }
} else { } else {
// Otherwise, clear our exclusive hold and finish // Otherwise, clear our exclusive hold and finish
monitor.ClearExclusive(); monitor.ClearExclusive(current_core);
} }
// We're done. // We're done.
@ -78,7 +78,7 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
} }
} else { } else {
// Otherwise, clear our exclusive hold and finish. // Otherwise, clear our exclusive hold and finish.
monitor.ClearExclusive(); monitor.ClearExclusive(current_core);
} }
// We're done. // We're done.

View file

@ -31,7 +31,7 @@ constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) { } else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
return KMemoryManager::Pool::SystemNonSecure; return KMemoryManager::Pool::SystemNonSecure;
} else { } else {
ASSERT("InvalidMemoryRegionType for conversion to Pool"); ASSERT_MSG("InvalidMemoryRegionType for conversion to Pool");
return {}; return {};
} }
} }
@ -102,9 +102,8 @@ void KMemoryManager::Initialize(VAddr management_region, size_t management_regio
Impl* manager = std::addressof(managers[num_managers++]); Impl* manager = std::addressof(managers[num_managers++]);
ASSERT(num_managers <= managers.size()); ASSERT(num_managers <= managers.size());
const size_t cur_size = const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
manager->Initialize(system, region_address, region_size, management_region, management_region_end, region_pool);
management_region_end, region_pool);
management_region += cur_size; management_region += cur_size;
ASSERT(management_region <= management_region_end); ASSERT(management_region <= management_region_end);
@ -384,9 +383,8 @@ void KMemoryManager::Open(const KPageLinkedList& pg) {
} }
} }
size_t KMemoryManager::Impl::Initialize([[maybe_unused]] Core::System& system, PAddr address, size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
size_t size, VAddr management, VAddr management_end, VAddr management_end, Pool p) {
Pool p) {
// Calculate management sizes. // Calculate management sizes.
const size_t ref_count_size = (size / PageSize) * sizeof(u16); const size_t ref_count_size = (size / PageSize) * sizeof(u16);
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size); const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);

View file

@ -112,8 +112,8 @@ private:
Impl() = default; Impl() = default;
~Impl() = default; ~Impl() = default;
size_t Initialize(Core::System& system, PAddr address, size_t size, VAddr management, size_t Initialize(PAddr address, size_t size, VAddr management, VAddr management_end,
VAddr management_end, Pool p); Pool p);
VAddr AllocateBlock(s32 index, bool random) { VAddr AllocateBlock(s32 index, bool random) {
return heap.AllocateBlock(index, random); return heap.AllocateBlock(index, random);

View file

@ -241,7 +241,7 @@ static_assert(KMemoryRegionType_VirtualDramKernelPtHeap.GetValue() == 0x2A);
static_assert(KMemoryRegionType_VirtualDramKernelTraceBuffer.GetValue() == 0x4A); static_assert(KMemoryRegionType_VirtualDramKernelTraceBuffer.GetValue() == 0x4A);
// UNUSED: .DeriveSparse(2, 2, 0); // UNUSED: .DeriveSparse(2, 2, 0);
constexpr inline const auto KMemoryRegionType_VirtualDramUnknownDebug = constexpr auto KMemoryRegionType_VirtualDramUnknownDebug =
KMemoryRegionType_Dram.DeriveSparse(2, 2, 1); KMemoryRegionType_Dram.DeriveSparse(2, 2, 1);
static_assert(KMemoryRegionType_VirtualDramUnknownDebug.GetValue() == (0x52)); static_assert(KMemoryRegionType_VirtualDramUnknownDebug.GetValue() == (0x52));

View file

@ -71,7 +71,7 @@ struct KernelCore::Impl {
// Derive the initial memory layout from the emulated board // Derive the initial memory layout from the emulated board
Init::InitializeSlabResourceCounts(kernel); Init::InitializeSlabResourceCounts(kernel);
DeriveInitialMemoryLayout(); DeriveInitialMemoryLayout();
Init::InitializeSlabHeaps(system, memory_layout); Init::InitializeSlabHeaps(system, *memory_layout);
// Initialize kernel memory and resources. // Initialize kernel memory and resources.
InitializeSystemResourceLimit(kernel, system.CoreTiming()); InitializeSystemResourceLimit(kernel, system.CoreTiming());
@ -223,7 +223,7 @@ struct KernelCore::Impl {
system_resource_limit = KResourceLimit::Create(system.Kernel()); system_resource_limit = KResourceLimit::Create(system.Kernel());
system_resource_limit->Initialize(&core_timing); system_resource_limit->Initialize(&core_timing);
const auto [total_size, kernel_size] = memory_layout.GetTotalAndKernelMemorySizes(); const auto [total_size, kernel_size] = memory_layout->GetTotalAndKernelMemorySizes();
// If setting the default system values fails, then something seriously wrong has occurred. // If setting the default system values fails, then something seriously wrong has occurred.
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, total_size) ASSERT(system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, total_size)
@ -353,15 +353,17 @@ struct KernelCore::Impl {
} }
void DeriveInitialMemoryLayout() { void DeriveInitialMemoryLayout() {
memory_layout = std::make_unique<KMemoryLayout>();
// Insert the root region for the virtual memory tree, from which all other regions will // Insert the root region for the virtual memory tree, from which all other regions will
// derive. // derive.
memory_layout.GetVirtualMemoryRegionTree().InsertDirectly( memory_layout->GetVirtualMemoryRegionTree().InsertDirectly(
KernelVirtualAddressSpaceBase, KernelVirtualAddressSpaceBase,
KernelVirtualAddressSpaceBase + KernelVirtualAddressSpaceSize - 1); KernelVirtualAddressSpaceBase + KernelVirtualAddressSpaceSize - 1);
// Insert the root region for the physical memory tree, from which all other regions will // Insert the root region for the physical memory tree, from which all other regions will
// derive. // derive.
memory_layout.GetPhysicalMemoryRegionTree().InsertDirectly( memory_layout->GetPhysicalMemoryRegionTree().InsertDirectly(
KernelPhysicalAddressSpaceBase, KernelPhysicalAddressSpaceBase,
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceSize - 1); KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceSize - 1);
@ -378,7 +380,7 @@ struct KernelCore::Impl {
if (!(kernel_region_start + KernelRegionSize - 1 <= KernelVirtualAddressSpaceLast)) { if (!(kernel_region_start + KernelRegionSize - 1 <= KernelVirtualAddressSpaceLast)) {
kernel_region_size = KernelVirtualAddressSpaceEnd - kernel_region_start; kernel_region_size = KernelVirtualAddressSpaceEnd - kernel_region_start;
} }
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
kernel_region_start, kernel_region_size, KMemoryRegionType_Kernel)); kernel_region_start, kernel_region_size, KMemoryRegionType_Kernel));
// Setup the code region. // Setup the code region.
@ -387,11 +389,11 @@ struct KernelCore::Impl {
Common::AlignDown(code_start_virt_addr, CodeRegionAlign); Common::AlignDown(code_start_virt_addr, CodeRegionAlign);
constexpr VAddr code_region_end = Common::AlignUp(code_end_virt_addr, CodeRegionAlign); constexpr VAddr code_region_end = Common::AlignUp(code_end_virt_addr, CodeRegionAlign);
constexpr size_t code_region_size = code_region_end - code_region_start; constexpr size_t code_region_size = code_region_end - code_region_start;
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
code_region_start, code_region_size, KMemoryRegionType_KernelCode)); code_region_start, code_region_size, KMemoryRegionType_KernelCode));
// Setup board-specific device physical regions. // Setup board-specific device physical regions.
Init::SetupDevicePhysicalMemoryRegions(memory_layout); Init::SetupDevicePhysicalMemoryRegions(*memory_layout);
// Determine the amount of space needed for the misc region. // Determine the amount of space needed for the misc region.
size_t misc_region_needed_size; size_t misc_region_needed_size;
@ -400,7 +402,7 @@ struct KernelCore::Impl {
misc_region_needed_size = Core::Hardware::NUM_CPU_CORES * (3 * (PageSize + PageSize)); misc_region_needed_size = Core::Hardware::NUM_CPU_CORES * (3 * (PageSize + PageSize));
// Account for each auto-map device. // Account for each auto-map device.
for (const auto& region : memory_layout.GetPhysicalMemoryRegionTree()) { for (const auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) { if (region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
// Check that the region is valid. // Check that the region is valid.
ASSERT(region.GetEndAddress() != 0); ASSERT(region.GetEndAddress() != 0);
@ -425,22 +427,22 @@ struct KernelCore::Impl {
// Setup the misc region. // Setup the misc region.
const VAddr misc_region_start = const VAddr misc_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
misc_region_size, MiscRegionAlign, KMemoryRegionType_Kernel); misc_region_size, MiscRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
misc_region_start, misc_region_size, KMemoryRegionType_KernelMisc)); misc_region_start, misc_region_size, KMemoryRegionType_KernelMisc));
// Setup the stack region. // Setup the stack region.
constexpr size_t StackRegionSize = 14_MiB; constexpr size_t StackRegionSize = 14_MiB;
constexpr size_t StackRegionAlign = KernelAslrAlignment; constexpr size_t StackRegionAlign = KernelAslrAlignment;
const VAddr stack_region_start = const VAddr stack_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
StackRegionSize, StackRegionAlign, KMemoryRegionType_Kernel); StackRegionSize, StackRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
stack_region_start, StackRegionSize, KMemoryRegionType_KernelStack)); stack_region_start, StackRegionSize, KMemoryRegionType_KernelStack));
// Determine the size of the resource region. // Determine the size of the resource region.
const size_t resource_region_size = memory_layout.GetResourceRegionSizeForInit(); const size_t resource_region_size = memory_layout->GetResourceRegionSizeForInit();
// Determine the size of the slab region. // Determine the size of the slab region.
const size_t slab_region_size = const size_t slab_region_size =
@ -457,23 +459,23 @@ struct KernelCore::Impl {
Common::AlignUp(code_end_phys_addr + slab_region_size, SlabRegionAlign) - Common::AlignUp(code_end_phys_addr + slab_region_size, SlabRegionAlign) -
Common::AlignDown(code_end_phys_addr, SlabRegionAlign); Common::AlignDown(code_end_phys_addr, SlabRegionAlign);
const VAddr slab_region_start = const VAddr slab_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
slab_region_needed_size, SlabRegionAlign, KMemoryRegionType_Kernel) + slab_region_needed_size, SlabRegionAlign, KMemoryRegionType_Kernel) +
(code_end_phys_addr % SlabRegionAlign); (code_end_phys_addr % SlabRegionAlign);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
slab_region_start, slab_region_size, KMemoryRegionType_KernelSlab)); slab_region_start, slab_region_size, KMemoryRegionType_KernelSlab));
// Setup the temp region. // Setup the temp region.
constexpr size_t TempRegionSize = 128_MiB; constexpr size_t TempRegionSize = 128_MiB;
constexpr size_t TempRegionAlign = KernelAslrAlignment; constexpr size_t TempRegionAlign = KernelAslrAlignment;
const VAddr temp_region_start = const VAddr temp_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegion( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
TempRegionSize, TempRegionAlign, KMemoryRegionType_Kernel); TempRegionSize, TempRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert(temp_region_start, TempRegionSize, ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(temp_region_start, TempRegionSize,
KMemoryRegionType_KernelTemp)); KMemoryRegionType_KernelTemp));
// Automatically map in devices that have auto-map attributes. // Automatically map in devices that have auto-map attributes.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) { for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
// We only care about kernel regions. // We only care about kernel regions.
if (!region.IsDerivedFrom(KMemoryRegionType_Kernel)) { if (!region.IsDerivedFrom(KMemoryRegionType_Kernel)) {
continue; continue;
@ -500,21 +502,21 @@ struct KernelCore::Impl {
const size_t map_size = const size_t map_size =
Common::AlignUp(region.GetEndAddress(), PageSize) - map_phys_addr; Common::AlignUp(region.GetEndAddress(), PageSize) - map_phys_addr;
const VAddr map_virt_addr = const VAddr map_virt_addr =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
map_size, PageSize, KMemoryRegionType_KernelMisc, PageSize); map_size, PageSize, KMemoryRegionType_KernelMisc, PageSize);
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
map_virt_addr, map_size, KMemoryRegionType_KernelMiscMappedDevice)); map_virt_addr, map_size, KMemoryRegionType_KernelMiscMappedDevice));
region.SetPairAddress(map_virt_addr + region.GetAddress() - map_phys_addr); region.SetPairAddress(map_virt_addr + region.GetAddress() - map_phys_addr);
} }
Init::SetupDramPhysicalMemoryRegions(memory_layout); Init::SetupDramPhysicalMemoryRegions(*memory_layout);
// Insert a physical region for the kernel code region. // Insert a physical region for the kernel code region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert( ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
code_start_phys_addr, code_region_size, KMemoryRegionType_DramKernelCode)); code_start_phys_addr, code_region_size, KMemoryRegionType_DramKernelCode));
// Insert a physical region for the kernel slab region. // Insert a physical region for the kernel slab region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert( ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_start_phys_addr, slab_region_size, KMemoryRegionType_DramKernelSlab)); slab_start_phys_addr, slab_region_size, KMemoryRegionType_DramKernelSlab));
// Determine size available for kernel page table heaps, requiring > 8 MB. // Determine size available for kernel page table heaps, requiring > 8 MB.
@ -523,12 +525,12 @@ struct KernelCore::Impl {
ASSERT(page_table_heap_size / 4_MiB > 2); ASSERT(page_table_heap_size / 4_MiB > 2);
// Insert a physical region for the kernel page table heap region // Insert a physical region for the kernel page table heap region
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert( ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_end_phys_addr, page_table_heap_size, KMemoryRegionType_DramKernelPtHeap)); slab_end_phys_addr, page_table_heap_size, KMemoryRegionType_DramKernelPtHeap));
// All DRAM regions that we haven't tagged by this point will be mapped under the linear // All DRAM regions that we haven't tagged by this point will be mapped under the linear
// mapping. Tag them. // mapping. Tag them.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) { for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == KMemoryRegionType_Dram) { if (region.GetType() == KMemoryRegionType_Dram) {
// Check that the region is valid. // Check that the region is valid.
ASSERT(region.GetEndAddress() != 0); ASSERT(region.GetEndAddress() != 0);
@ -540,7 +542,7 @@ struct KernelCore::Impl {
// Get the linear region extents. // Get the linear region extents.
const auto linear_extents = const auto linear_extents =
memory_layout.GetPhysicalMemoryRegionTree().GetDerivedRegionExtents( memory_layout->GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
KMemoryRegionAttr_LinearMapped); KMemoryRegionAttr_LinearMapped);
ASSERT(linear_extents.GetEndAddress() != 0); ASSERT(linear_extents.GetEndAddress() != 0);
@ -552,7 +554,7 @@ struct KernelCore::Impl {
Common::AlignUp(linear_extents.GetEndAddress(), LinearRegionAlign) - Common::AlignUp(linear_extents.GetEndAddress(), LinearRegionAlign) -
aligned_linear_phys_start; aligned_linear_phys_start;
const VAddr linear_region_start = const VAddr linear_region_start =
memory_layout.GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard( memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
linear_region_size, LinearRegionAlign, KMemoryRegionType_None, LinearRegionAlign); linear_region_size, LinearRegionAlign, KMemoryRegionType_None, LinearRegionAlign);
const u64 linear_region_phys_to_virt_diff = linear_region_start - aligned_linear_phys_start; const u64 linear_region_phys_to_virt_diff = linear_region_start - aligned_linear_phys_start;
@ -561,7 +563,7 @@ struct KernelCore::Impl {
{ {
PAddr cur_phys_addr = 0; PAddr cur_phys_addr = 0;
u64 cur_size = 0; u64 cur_size = 0;
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) { for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) { if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
continue; continue;
} }
@ -580,47 +582,47 @@ struct KernelCore::Impl {
const VAddr region_virt_addr = const VAddr region_virt_addr =
region.GetAddress() + linear_region_phys_to_virt_diff; region.GetAddress() + linear_region_phys_to_virt_diff;
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
region_virt_addr, region.GetSize(), region_virt_addr, region.GetSize(),
GetTypeForVirtualLinearMapping(region.GetType()))); GetTypeForVirtualLinearMapping(region.GetType())));
region.SetPairAddress(region_virt_addr); region.SetPairAddress(region_virt_addr);
KMemoryRegion* virt_region = KMemoryRegion* virt_region =
memory_layout.GetVirtualMemoryRegionTree().FindModifiable(region_virt_addr); memory_layout->GetVirtualMemoryRegionTree().FindModifiable(region_virt_addr);
ASSERT(virt_region != nullptr); ASSERT(virt_region != nullptr);
virt_region->SetPairAddress(region.GetAddress()); virt_region->SetPairAddress(region.GetAddress());
} }
} }
// Insert regions for the initial page table region. // Insert regions for the initial page table region.
ASSERT(memory_layout.GetPhysicalMemoryRegionTree().Insert( ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
resource_end_phys_addr, KernelPageTableHeapSize, KMemoryRegionType_DramKernelInitPt)); resource_end_phys_addr, KernelPageTableHeapSize, KMemoryRegionType_DramKernelInitPt));
ASSERT(memory_layout.GetVirtualMemoryRegionTree().Insert( ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
resource_end_phys_addr + linear_region_phys_to_virt_diff, KernelPageTableHeapSize, resource_end_phys_addr + linear_region_phys_to_virt_diff, KernelPageTableHeapSize,
KMemoryRegionType_VirtualDramKernelInitPt)); KMemoryRegionType_VirtualDramKernelInitPt));
// All linear-mapped DRAM regions that we haven't tagged by this point will be allocated to // All linear-mapped DRAM regions that we haven't tagged by this point will be allocated to
// some pool partition. Tag them. // some pool partition. Tag them.
for (auto& region : memory_layout.GetPhysicalMemoryRegionTree()) { for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == (KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped)) { if (region.GetType() == (KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped)) {
region.SetType(KMemoryRegionType_DramPoolPartition); region.SetType(KMemoryRegionType_DramPoolPartition);
} }
} }
// Setup all other memory regions needed to arrange the pool partitions. // Setup all other memory regions needed to arrange the pool partitions.
Init::SetupPoolPartitionMemoryRegions(memory_layout); Init::SetupPoolPartitionMemoryRegions(*memory_layout);
// Cache all linear regions in their own trees for faster access, later. // Cache all linear regions in their own trees for faster access, later.
memory_layout.InitializeLinearMemoryRegionTrees(aligned_linear_phys_start, memory_layout->InitializeLinearMemoryRegionTrees(aligned_linear_phys_start,
linear_region_start); linear_region_start);
} }
void InitializeMemoryLayout() { void InitializeMemoryLayout() {
const auto system_pool = memory_layout.GetKernelSystemPoolRegionPhysicalExtents(); const auto system_pool = memory_layout->GetKernelSystemPoolRegionPhysicalExtents();
// Initialize the memory manager. // Initialize the memory manager.
memory_manager = std::make_unique<KMemoryManager>(system); memory_manager = std::make_unique<KMemoryManager>(system);
const auto& management_region = memory_layout.GetPoolManagementRegion(); const auto& management_region = memory_layout->GetPoolManagementRegion();
ASSERT(management_region.GetEndAddress() != 0); ASSERT(management_region.GetEndAddress() != 0);
memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize()); memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize());
@ -773,7 +775,7 @@ struct KernelCore::Impl {
Kernel::KSharedMemory* hidbus_shared_mem{}; Kernel::KSharedMemory* hidbus_shared_mem{};
// Memory layout // Memory layout
KMemoryLayout memory_layout; std::unique_ptr<KMemoryLayout> memory_layout;
// Threads used for services // Threads used for services
std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads; std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
@ -1149,7 +1151,7 @@ const KWorkerTaskManager& KernelCore::WorkerTaskManager() const {
} }
const KMemoryLayout& KernelCore::MemoryLayout() const { const KMemoryLayout& KernelCore::MemoryLayout() const {
return impl->memory_layout; return *impl->memory_layout;
} }
bool KernelCore::IsPhantomModeForSingleCore() const { bool KernelCore::IsPhantomModeForSingleCore() const {

View file

@ -632,6 +632,7 @@ void Config::ReadCpuValues() {
ReadGlobalSetting(Settings::values.cpuopt_unsafe_ignore_standard_fpcr); ReadGlobalSetting(Settings::values.cpuopt_unsafe_ignore_standard_fpcr);
ReadGlobalSetting(Settings::values.cpuopt_unsafe_inaccurate_nan); ReadGlobalSetting(Settings::values.cpuopt_unsafe_inaccurate_nan);
ReadGlobalSetting(Settings::values.cpuopt_unsafe_fastmem_check); ReadGlobalSetting(Settings::values.cpuopt_unsafe_fastmem_check);
ReadGlobalSetting(Settings::values.cpuopt_unsafe_ignore_global_monitor);
if (global) { if (global) {
ReadBasicSetting(Settings::values.cpu_debug_mode); ReadBasicSetting(Settings::values.cpu_debug_mode);
@ -644,6 +645,8 @@ void Config::ReadCpuValues() {
ReadBasicSetting(Settings::values.cpuopt_misc_ir); ReadBasicSetting(Settings::values.cpuopt_misc_ir);
ReadBasicSetting(Settings::values.cpuopt_reduce_misalign_checks); ReadBasicSetting(Settings::values.cpuopt_reduce_misalign_checks);
ReadBasicSetting(Settings::values.cpuopt_fastmem); ReadBasicSetting(Settings::values.cpuopt_fastmem);
ReadBasicSetting(Settings::values.cpuopt_fastmem_exclusives);
ReadBasicSetting(Settings::values.cpuopt_recompile_exclusives);
} }
qt_config->endGroup(); qt_config->endGroup();
@ -1173,6 +1176,7 @@ void Config::SaveCpuValues() {
WriteGlobalSetting(Settings::values.cpuopt_unsafe_ignore_standard_fpcr); WriteGlobalSetting(Settings::values.cpuopt_unsafe_ignore_standard_fpcr);
WriteGlobalSetting(Settings::values.cpuopt_unsafe_inaccurate_nan); WriteGlobalSetting(Settings::values.cpuopt_unsafe_inaccurate_nan);
WriteGlobalSetting(Settings::values.cpuopt_unsafe_fastmem_check); WriteGlobalSetting(Settings::values.cpuopt_unsafe_fastmem_check);
WriteGlobalSetting(Settings::values.cpuopt_unsafe_ignore_global_monitor);
if (global) { if (global) {
WriteBasicSetting(Settings::values.cpu_debug_mode); WriteBasicSetting(Settings::values.cpu_debug_mode);

View file

@ -36,6 +36,7 @@ void ConfigureCpu::SetConfiguration() {
ui->cpuopt_unsafe_ignore_standard_fpcr->setEnabled(runtime_lock); ui->cpuopt_unsafe_ignore_standard_fpcr->setEnabled(runtime_lock);
ui->cpuopt_unsafe_inaccurate_nan->setEnabled(runtime_lock); ui->cpuopt_unsafe_inaccurate_nan->setEnabled(runtime_lock);
ui->cpuopt_unsafe_fastmem_check->setEnabled(runtime_lock); ui->cpuopt_unsafe_fastmem_check->setEnabled(runtime_lock);
ui->cpuopt_unsafe_ignore_global_monitor->setEnabled(runtime_lock);
ui->cpuopt_unsafe_unfuse_fma->setChecked(Settings::values.cpuopt_unsafe_unfuse_fma.GetValue()); ui->cpuopt_unsafe_unfuse_fma->setChecked(Settings::values.cpuopt_unsafe_unfuse_fma.GetValue());
ui->cpuopt_unsafe_reduce_fp_error->setChecked( ui->cpuopt_unsafe_reduce_fp_error->setChecked(
@ -46,6 +47,8 @@ void ConfigureCpu::SetConfiguration() {
Settings::values.cpuopt_unsafe_inaccurate_nan.GetValue()); Settings::values.cpuopt_unsafe_inaccurate_nan.GetValue());
ui->cpuopt_unsafe_fastmem_check->setChecked( ui->cpuopt_unsafe_fastmem_check->setChecked(
Settings::values.cpuopt_unsafe_fastmem_check.GetValue()); Settings::values.cpuopt_unsafe_fastmem_check.GetValue());
ui->cpuopt_unsafe_ignore_global_monitor->setChecked(
Settings::values.cpuopt_unsafe_ignore_global_monitor.GetValue());
if (Settings::IsConfiguringGlobal()) { if (Settings::IsConfiguringGlobal()) {
ui->accuracy->setCurrentIndex(static_cast<int>(Settings::values.cpu_accuracy.GetValue())); ui->accuracy->setCurrentIndex(static_cast<int>(Settings::values.cpu_accuracy.GetValue()));
@ -82,6 +85,9 @@ void ConfigureCpu::ApplyConfiguration() {
ConfigurationShared::ApplyPerGameSetting(&Settings::values.cpuopt_unsafe_fastmem_check, ConfigurationShared::ApplyPerGameSetting(&Settings::values.cpuopt_unsafe_fastmem_check,
ui->cpuopt_unsafe_fastmem_check, ui->cpuopt_unsafe_fastmem_check,
cpuopt_unsafe_fastmem_check); cpuopt_unsafe_fastmem_check);
ConfigurationShared::ApplyPerGameSetting(&Settings::values.cpuopt_unsafe_ignore_global_monitor,
ui->cpuopt_unsafe_ignore_global_monitor,
cpuopt_unsafe_ignore_global_monitor);
} }
void ConfigureCpu::changeEvent(QEvent* event) { void ConfigureCpu::changeEvent(QEvent* event) {
@ -120,4 +126,7 @@ void ConfigureCpu::SetupPerGameUI() {
ConfigurationShared::SetColoredTristate(ui->cpuopt_unsafe_fastmem_check, ConfigurationShared::SetColoredTristate(ui->cpuopt_unsafe_fastmem_check,
Settings::values.cpuopt_unsafe_fastmem_check, Settings::values.cpuopt_unsafe_fastmem_check,
cpuopt_unsafe_fastmem_check); cpuopt_unsafe_fastmem_check);
ConfigurationShared::SetColoredTristate(ui->cpuopt_unsafe_ignore_global_monitor,
Settings::values.cpuopt_unsafe_ignore_global_monitor,
cpuopt_unsafe_ignore_global_monitor);
} }

View file

@ -45,6 +45,7 @@ private:
ConfigurationShared::CheckState cpuopt_unsafe_ignore_standard_fpcr; ConfigurationShared::CheckState cpuopt_unsafe_ignore_standard_fpcr;
ConfigurationShared::CheckState cpuopt_unsafe_inaccurate_nan; ConfigurationShared::CheckState cpuopt_unsafe_inaccurate_nan;
ConfigurationShared::CheckState cpuopt_unsafe_fastmem_check; ConfigurationShared::CheckState cpuopt_unsafe_fastmem_check;
ConfigurationShared::CheckState cpuopt_unsafe_ignore_global_monitor;
const Core::System& system; const Core::System& system;
}; };

View file

@ -150,6 +150,18 @@
</property> </property>
</widget> </widget>
</item> </item>
<item>
<widget class="QCheckBox" name="cpuopt_unsafe_ignore_global_monitor">
<property name="toolTip">
<string>
&lt;div&gt;This option improves speed by relying only on the semantics of cmpxchg to ensure safety of exclusive access instructions. Please note this may result in deadlocks and other race conditions.&lt;/div&gt;
</string>
</property>
<property name="text">
<string>Ignore global monitor</string>
</property>
</widget>
</item>
</layout> </layout>
</widget> </widget>
</item> </item>

View file

@ -44,6 +44,12 @@ void ConfigureCpuDebug::SetConfiguration() {
Settings::values.cpuopt_reduce_misalign_checks.GetValue()); Settings::values.cpuopt_reduce_misalign_checks.GetValue());
ui->cpuopt_fastmem->setEnabled(runtime_lock); ui->cpuopt_fastmem->setEnabled(runtime_lock);
ui->cpuopt_fastmem->setChecked(Settings::values.cpuopt_fastmem.GetValue()); ui->cpuopt_fastmem->setChecked(Settings::values.cpuopt_fastmem.GetValue());
ui->cpuopt_fastmem_exclusives->setEnabled(runtime_lock);
ui->cpuopt_fastmem_exclusives->setChecked(
Settings::values.cpuopt_fastmem_exclusives.GetValue());
ui->cpuopt_recompile_exclusives->setEnabled(runtime_lock);
ui->cpuopt_recompile_exclusives->setChecked(
Settings::values.cpuopt_recompile_exclusives.GetValue());
} }
void ConfigureCpuDebug::ApplyConfiguration() { void ConfigureCpuDebug::ApplyConfiguration() {
@ -56,6 +62,8 @@ void ConfigureCpuDebug::ApplyConfiguration() {
Settings::values.cpuopt_misc_ir = ui->cpuopt_misc_ir->isChecked(); Settings::values.cpuopt_misc_ir = ui->cpuopt_misc_ir->isChecked();
Settings::values.cpuopt_reduce_misalign_checks = ui->cpuopt_reduce_misalign_checks->isChecked(); Settings::values.cpuopt_reduce_misalign_checks = ui->cpuopt_reduce_misalign_checks->isChecked();
Settings::values.cpuopt_fastmem = ui->cpuopt_fastmem->isChecked(); Settings::values.cpuopt_fastmem = ui->cpuopt_fastmem->isChecked();
Settings::values.cpuopt_fastmem_exclusives = ui->cpuopt_fastmem_exclusives->isChecked();
Settings::values.cpuopt_recompile_exclusives = ui->cpuopt_recompile_exclusives->isChecked();
} }
void ConfigureCpuDebug::changeEvent(QEvent* event) { void ConfigureCpuDebug::changeEvent(QEvent* event) {

View file

@ -144,7 +144,34 @@
</string> </string>
</property> </property>
<property name="text"> <property name="text">
<string>Enable Host MMU Emulation</string> <string>Enable Host MMU Emulation (general memory instructions)</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="cpuopt_fastmem_exclusives">
<property name="toolTip">
<string>
&lt;div style=&quot;white-space: nowrap&quot;&gt;This optimization speeds up exclusive memory accesses by the guest program.&lt;/div&gt;
&lt;div style=&quot;white-space: nowrap&quot;&gt;Enabling it causes guest exclusive memory reads/writes to be done directly into memory and make use of Host's MMU.&lt;/div&gt;
&lt;div style=&quot;white-space: nowrap&quot;&gt;Disabling this forces all exclusive memory accesses to use Software MMU Emulation.&lt;/div&gt;
</string>
</property>
<property name="text">
<string>Enable Host MMU Emulation (exclusive memory instructions)</string>
</property>
</widget>
</item>
<item>
<widget class="QCheckBox" name="cpuopt_recompile_exclusives">
<property name="toolTip">
<string>
&lt;div style=&quot;white-space: nowrap&quot;&gt;This optimization speeds up exclusive memory accesses by the guest program.&lt;/div&gt;
&lt;div style=&quot;white-space: nowrap&quot;&gt;Enabling it reduces the overhead of fastmem failure of exclusive memory accesses.&lt;/div&gt;
</string>
</property>
<property name="text">
<string>Enable recompilation of exclusive memory instructions</string>
</property> </property>
</widget> </widget>
</item> </item>

View file

@ -280,11 +280,14 @@ void Config::ReadValues() {
ReadSetting("Cpu", Settings::values.cpuopt_misc_ir); ReadSetting("Cpu", Settings::values.cpuopt_misc_ir);
ReadSetting("Cpu", Settings::values.cpuopt_reduce_misalign_checks); ReadSetting("Cpu", Settings::values.cpuopt_reduce_misalign_checks);
ReadSetting("Cpu", Settings::values.cpuopt_fastmem); ReadSetting("Cpu", Settings::values.cpuopt_fastmem);
ReadSetting("Cpu", Settings::values.cpuopt_fastmem_exclusives);
ReadSetting("Cpu", Settings::values.cpuopt_recompile_exclusives);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_unfuse_fma); ReadSetting("Cpu", Settings::values.cpuopt_unsafe_unfuse_fma);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_reduce_fp_error); ReadSetting("Cpu", Settings::values.cpuopt_unsafe_reduce_fp_error);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_ignore_standard_fpcr); ReadSetting("Cpu", Settings::values.cpuopt_unsafe_ignore_standard_fpcr);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_inaccurate_nan); ReadSetting("Cpu", Settings::values.cpuopt_unsafe_inaccurate_nan);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_fastmem_check); ReadSetting("Cpu", Settings::values.cpuopt_unsafe_fastmem_check);
ReadSetting("Cpu", Settings::values.cpuopt_unsafe_ignore_global_monitor);
// Renderer // Renderer
ReadSetting("Renderer", Settings::values.renderer_backend); ReadSetting("Renderer", Settings::values.renderer_backend);

View file

@ -174,6 +174,14 @@ cpuopt_reduce_misalign_checks =
# 0: Disabled, 1 (default): Enabled # 0: Disabled, 1 (default): Enabled
cpuopt_fastmem = cpuopt_fastmem =
# Enable Host MMU Emulation for exclusive memory instructions (faster guest memory access)
# 0: Disabled, 1 (default): Enabled
cpuopt_fastmem_exclusives =
# Enable fallback on failure of fastmem of exclusive memory instructions (faster guest memory access)
# 0: Disabled, 1 (default): Enabled
cpuopt_recompile_exclusives =
# Enable unfuse FMA (improve performance on CPUs without FMA) # Enable unfuse FMA (improve performance on CPUs without FMA)
# Only enabled if cpu_accuracy is set to Unsafe. Automatically chosen with cpu_accuracy = Auto-select. # Only enabled if cpu_accuracy is set to Unsafe. Automatically chosen with cpu_accuracy = Auto-select.
# 0: Disabled, 1 (default): Enabled # 0: Disabled, 1 (default): Enabled
@ -199,6 +207,11 @@ cpuopt_unsafe_inaccurate_nan =
# 0: Disabled, 1 (default): Enabled # 0: Disabled, 1 (default): Enabled
cpuopt_unsafe_fastmem_check = cpuopt_unsafe_fastmem_check =
# Enable faster exclusive instructions
# Only enabled if cpu_accuracy is set to Unsafe. Automatically chosen with cpu_accuracy = Auto-select.
# 0: Disabled, 1 (default): Enabled
cpuopt_unsafe_ignore_global_monitor =
[Renderer] [Renderer]
# Which backend API to use. # Which backend API to use.
# 0 (default): OpenGL, 1: Vulkan # 0 (default): OpenGL, 1: Vulkan