early-access version 3592

This commit is contained in:
pineappleEA 2023-05-15 19:35:46 +02:00
parent d18469456b
commit 165c5bc7d0
11 changed files with 127 additions and 227 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 3591.
This is the source code for early-access 3592.
## Legal Notice

View file

@ -979,8 +979,8 @@ void Controller_NPad::VibrateController(
}
void Controller_NPad::VibrateControllers(
const std::vector<Core::HID::VibrationDeviceHandle>& vibration_device_handles,
const std::vector<Core::HID::VibrationValue>& vibration_values) {
std::span<const Core::HID::VibrationDeviceHandle> vibration_device_handles,
std::span<const Core::HID::VibrationValue> vibration_values) {
if (!Settings::values.vibration_enabled.GetValue() && !permit_vibration_session_enabled) {
return;
}

View file

@ -112,8 +112,8 @@ public:
const Core::HID::VibrationValue& vibration_value);
void VibrateControllers(
const std::vector<Core::HID::VibrationDeviceHandle>& vibration_device_handles,
const std::vector<Core::HID::VibrationValue>& vibration_values);
std::span<const Core::HID::VibrationDeviceHandle> vibration_device_handles,
std::span<const Core::HID::VibrationValue> vibration_values);
Core::HID::VibrationValue GetLastVibration(
const Core::HID::VibrationDeviceHandle& vibration_device_handle) const;

View file

@ -1601,16 +1601,16 @@ void Hid::SendVibrationValues(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
const auto applet_resource_user_id{rp.Pop<u64>()};
const auto handles = ctx.ReadBuffer(0);
const auto vibrations = ctx.ReadBuffer(1);
const auto handle_data = ctx.ReadBuffer(0);
const auto handle_count = ctx.GetReadBufferNumElements<Core::HID::VibrationDeviceHandle>(0);
const auto vibration_data = ctx.ReadBuffer(1);
const auto vibration_count = ctx.GetReadBufferNumElements<Core::HID::VibrationValue>(1);
std::vector<Core::HID::VibrationDeviceHandle> vibration_device_handles(
handles.size() / sizeof(Core::HID::VibrationDeviceHandle));
std::vector<Core::HID::VibrationValue> vibration_values(vibrations.size() /
sizeof(Core::HID::VibrationValue));
std::memcpy(vibration_device_handles.data(), handles.data(), handles.size());
std::memcpy(vibration_values.data(), vibrations.data(), vibrations.size());
auto vibration_device_handles =
std::span(reinterpret_cast<const Core::HID::VibrationDeviceHandle*>(handle_data.data()),
handle_count);
auto vibration_values = std::span(
reinterpret_cast<const Core::HID::VibrationValue*>(vibration_data.data()), vibration_count);
applet_resource->GetController<Controller_NPad>(HidController::NPad)
.VibrateControllers(vibration_device_handles, vibration_values);

View file

@ -23,94 +23,42 @@ BufferCache<P>::BufferCache(VideoCore::RasterizerInterface& rasterizer_,
common_ranges.clear();
inline_buffer_id = NULL_BUFFER_ID;
if (!runtime.CanReportMemoryUsage()) {
minimum_memory = DEFAULT_EXPECTED_MEMORY;
critical_memory = DEFAULT_CRITICAL_MEMORY;
return;
}
const s64 device_memory = static_cast<s64>(runtime.GetDeviceLocalMemory());
const u64 device_mem_per = device_memory / 100;
minimum_memory = device_mem_per * 25;
expected_memory = device_mem_per * 50;
critical_memory = device_mem_per * 80;
LOG_INFO(HW_GPU, "Buffer cache device memory limits: min {} expected {} critical {}",
minimum_memory, expected_memory, critical_memory);
const s64 min_spacing_expected = device_memory - 1_GiB - 512_MiB;
const s64 min_spacing_critical = device_memory - 1_GiB;
const s64 mem_threshold = std::min(device_memory, TARGET_THRESHOLD);
const s64 min_vacancy_expected = (6 * mem_threshold) / 10;
const s64 min_vacancy_critical = (3 * mem_threshold) / 10;
minimum_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_expected, min_spacing_expected),
DEFAULT_EXPECTED_MEMORY));
critical_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_critical, min_spacing_critical),
DEFAULT_CRITICAL_MEMORY));
}
template <class P>
void BufferCache<P>::RunGarbageCollector() {
if (total_used_memory < minimum_memory) {
return;
}
bool is_expected = total_used_memory >= expected_memory;
bool is_critical = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = is_critical ? 60ULL : is_expected ? 120ULL : 240ULL;
size_t num_iterations = is_critical ? 40 : (is_expected ? 20 : 10);
boost::container::small_vector<std::pair<BufferId, VideoCommon::BufferCopies>, 40> to_delete;
u64 total_size{0};
const auto clean_up = [&](BufferId buffer_id) {
const bool aggressive_gc = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = aggressive_gc ? 60 : 120;
int num_iterations = aggressive_gc ? 64 : 32;
const auto clean_up = [this, &num_iterations](BufferId buffer_id) {
if (num_iterations == 0) {
return true;
}
--num_iterations;
auto& buffer = slot_buffers[buffer_id];
auto buffer_copies = FullDownloadCopies(buffer, buffer.CpuAddr(), buffer.SizeBytes());
total_size += buffer_copies.total_size;
to_delete.push_back({buffer_id, std::move(buffer_copies)});
DownloadBufferMemory(buffer);
DeleteBuffer(buffer_id);
return false;
};
lru_cache.ForEachItemBelow(frame_tick - ticks_to_destroy, clean_up);
if (total_size > 0) {
if constexpr (USE_MEMORY_MAPS) {
auto map = runtime.DownloadStagingBuffer(Common::AlignUp(total_size, 1024));
auto base_offset = map.offset;
for (auto& [buffer_id, buffer_copies] : to_delete) {
if (buffer_copies.total_size == 0) {
continue;
}
for (auto& copy : buffer_copies.copies) {
copy.dst_offset += map.offset;
}
auto& buffer = slot_buffers[buffer_id];
runtime.CopyBuffer(map.buffer, buffer, buffer_copies.copies);
map.offset += buffer_copies.total_size;
}
runtime.Finish();
for (auto& [buffer_id, buffer_copies] : to_delete) {
if (buffer_copies.total_size > 0) {
auto& buffer = slot_buffers[buffer_id];
for (const auto& copy : buffer_copies.copies) {
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
const u8* copy_mapped_memory =
map.mapped_span.data() + copy.dst_offset - base_offset;
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, copy_mapped_memory, copy.size);
}
}
DeleteBuffer(buffer_id);
}
} else {
for (auto& [buffer_id, buffer_copies] : to_delete) {
if (buffer_copies.total_size == 0) {
continue;
}
const std::span<u8> immediate_buffer = ImmediateBuffer(buffer_copies.total_size);
auto& buffer = slot_buffers[buffer_id];
for (const BufferCopy& copy : buffer_copies.copies) {
buffer.ImmediateDownload(copy.src_offset,
immediate_buffer.subspan(0, copy.size));
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, immediate_buffer.data(), copy.size);
}
DeleteBuffer(buffer_id);
}
}
} else {
for (auto& [buffer_id, buffer_copies] : to_delete) {
DeleteBuffer(buffer_id);
}
}
}
template <class P>
@ -129,10 +77,12 @@ void BufferCache<P>::TickFrame() {
uniform_buffer_skip_cache_size = skip_preferred ? DEFAULT_SKIP_CACHE_SIZE : 0;
// If we can obtain the memory info, use it instead of the estimate.
if (runtime.CanReportMemoryUsage() && frame_tick % 60 == 0) {
if (runtime.CanReportMemoryUsage()) {
total_used_memory = runtime.GetDeviceMemoryUsage();
}
RunGarbageCollector();
if (total_used_memory >= minimum_memory) {
RunGarbageCollector();
}
++frame_tick;
delayed_destruction_ring.Tick();
@ -1586,13 +1536,17 @@ bool BufferCache<P>::InlineMemory(VAddr dest_address, size_t copy_size,
}
template <class P>
VideoCommon::BufferCopies BufferCache<P>::FullDownloadCopies(Buffer& buffer, VAddr cpu_addr,
u64 size, bool clear) {
boost::container::small_vector<BufferCopy, 16> copies;
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer) {
DownloadBufferMemory(buffer, buffer.CpuAddr(), buffer.SizeBytes());
}
template <class P>
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 size) {
boost::container::small_vector<BufferCopy, 1> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
memory_tracker.ForEachDownloadRange(
cpu_addr, size, clear, [&](u64 cpu_addr_out, u64 range_size) {
memory_tracker.ForEachDownloadRangeAndClear(
cpu_addr, size, [&](u64 cpu_addr_out, u64 range_size) {
const VAddr buffer_addr = buffer.CpuAddr();
const auto add_download = [&](VAddr start, VAddr end) {
const u64 new_offset = start - buffer_addr;
@ -1616,35 +1570,22 @@ VideoCommon::BufferCopies BufferCache<P>::FullDownloadCopies(Buffer& buffer, VAd
ClearDownload(subtract_interval);
common_ranges.subtract(subtract_interval);
});
return {total_size_bytes, largest_copy, std::move(copies)};
}
template <class P>
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer) {
DownloadBufferMemory(buffer, buffer.CpuAddr(), buffer.SizeBytes());
}
template <class P>
void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 size) {
auto buffer_copies = FullDownloadCopies(buffer, cpu_addr, size);
if (buffer_copies.total_size == 0) {
if (total_size_bytes == 0) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(buffer_copies.total_size);
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
const u8* const mapped_memory = download_staging.mapped_span.data();
const std::span<BufferCopy> copies_span(buffer_copies.copies.data(),
buffer_copies.copies.size());
for (BufferCopy& copy : buffer_copies.copies) {
const std::span<BufferCopy> copies_span(copies.data(), copies.data() + copies.size());
for (BufferCopy& copy : copies) {
// Modify copies to have the staging offset in mind
copy.dst_offset += download_staging.offset;
}
runtime.CopyBuffer(download_staging.buffer, buffer, copies_span);
runtime.Finish();
for (const BufferCopy& copy : buffer_copies.copies) {
for (const BufferCopy& copy : copies) {
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
@ -1652,8 +1593,8 @@ void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 si
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, copy_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(buffer_copies.largest_copy);
for (const BufferCopy& copy : buffer_copies.copies) {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const BufferCopy& copy : copies) {
buffer.ImmediateDownload(copy.src_offset, immediate_buffer.subspan(0, copy.size));
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(copy_cpu_addr, immediate_buffer.data(), copy.size);

View file

@ -57,6 +57,8 @@ MICROPROFILE_DECLARE(GPU_PrepareBuffers);
MICROPROFILE_DECLARE(GPU_BindUploadBuffers);
MICROPROFILE_DECLARE(GPU_DownloadMemory);
using BufferId = SlotId;
using VideoCore::Surface::PixelFormat;
using namespace Common::Literals;
@ -462,9 +464,6 @@ private:
void MappedUploadMemory(Buffer& buffer, u64 total_size_bytes, std::span<BufferCopy> copies);
[[nodiscard]] VideoCommon::BufferCopies FullDownloadCopies(Buffer& buffer, VAddr cpu_addr,
u64 size, bool clear = true);
void DownloadBufferMemory(Buffer& buffer_id);
void DownloadBufferMemory(Buffer& buffer_id, VAddr cpu_addr, u64 size);
@ -567,7 +566,6 @@ private:
u64 frame_tick = 0;
u64 total_used_memory = 0;
u64 minimum_memory = 0;
u64 expected_memory = 0;
u64 critical_memory = 0;
BufferId inline_buffer_id;

View file

@ -348,25 +348,12 @@ void RasterizerVulkan::Clear(u32 layer_count) {
const u32 color_attachment = regs.clear_surface.RT;
if (use_color && framebuffer->HasAspectColorBit(color_attachment)) {
VkClearValue clear_value;
bool is_integer = false;
bool is_signed = false;
size_t int_size = 8;
for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; ++i) {
const auto& this_rt = regs.rt[i];
if (this_rt.Address() == 0) {
continue;
}
if (this_rt.format == Tegra::RenderTargetFormat::NONE) {
continue;
}
const auto format =
VideoCore::Surface::PixelFormatFromRenderTargetFormat(this_rt.format);
is_integer = IsPixelFormatInteger(format);
is_signed = IsPixelFormatSignedInteger(format);
int_size = PixelComponentSizeBitsInteger(format);
break;
}
const auto format =
VideoCore::Surface::PixelFormatFromRenderTargetFormat(regs.rt[color_attachment].format);
bool is_integer = IsPixelFormatInteger(format);
bool is_signed = IsPixelFormatSignedInteger(format);
size_t int_size = PixelComponentSizeBitsInteger(format);
VkClearValue clear_value{};
if (!is_integer) {
std::memcpy(clear_value.color.float32, regs.clear_color.data(),
regs.clear_color.size() * sizeof(f32));

View file

@ -47,31 +47,35 @@ TextureCache<P>::TextureCache(Runtime& runtime_, VideoCore::RasterizerInterface&
void(slot_image_views.insert(runtime, NullImageViewParams{}));
void(slot_samplers.insert(runtime, sampler_descriptor));
const s64 device_memory = static_cast<s64>(runtime.GetDeviceLocalMemory());
const u64 device_mem_per = device_memory / 100;
minimum_memory = device_mem_per * 25;
expected_memory = device_mem_per * 50;
critical_memory = device_mem_per * 80;
LOG_INFO(HW_GPU, "Texture cache device memory limits: min {} expected {} critical {}",
minimum_memory, expected_memory, critical_memory);
if constexpr (HAS_DEVICE_MEMORY_INFO) {
const s64 device_memory = static_cast<s64>(runtime.GetDeviceLocalMemory());
const s64 min_spacing_expected = device_memory - 1_GiB - 512_MiB;
const s64 min_spacing_critical = device_memory - 1_GiB;
const s64 mem_threshold = std::min(device_memory, TARGET_THRESHOLD);
const s64 min_vacancy_expected = (6 * mem_threshold) / 10;
const s64 min_vacancy_critical = (3 * mem_threshold) / 10;
expected_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_expected, min_spacing_expected),
DEFAULT_EXPECTED_MEMORY));
critical_memory = static_cast<u64>(
std::max(std::min(device_memory - min_vacancy_critical, min_spacing_critical),
DEFAULT_CRITICAL_MEMORY));
minimum_memory = static_cast<u64>((device_memory - mem_threshold) / 2);
} else {
expected_memory = DEFAULT_EXPECTED_MEMORY + 512_MiB;
critical_memory = DEFAULT_CRITICAL_MEMORY + 1_GiB;
minimum_memory = 0;
}
}
template <class P>
void TextureCache<P>::RunGarbageCollector() {
if (total_used_memory < minimum_memory) {
return;
}
bool is_expected = total_used_memory >= expected_memory;
bool is_critical = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = is_critical ? 10ULL : is_expected ? 25ULL : 50ULL;
size_t num_iterations = is_critical ? 40 : (is_expected ? 20 : 10);
boost::container::small_vector<
std::tuple<ImageId, bool, boost::container::small_vector<BufferImageCopy, 16>>, 40>
to_delete;
u64 total_download_size{0};
u32 largest_download_size{0};
const auto clean_up = [&](ImageId image_id) {
bool high_priority_mode = total_used_memory >= expected_memory;
bool aggressive_mode = total_used_memory >= critical_memory;
const u64 ticks_to_destroy = aggressive_mode ? 10ULL : high_priority_mode ? 25ULL : 50ULL;
size_t num_iterations = aggressive_mode ? 40 : (high_priority_mode ? 20 : 10);
const auto clean_up = [this, &num_iterations, &high_priority_mode,
&aggressive_mode](ImageId image_id) {
if (num_iterations == 0) {
return true;
}
@ -82,70 +86,51 @@ void TextureCache<P>::RunGarbageCollector() {
// used by the async decoder thread.
return false;
}
const bool do_download = image.IsSafeDownload() &&
False(image.flags & ImageFlagBits::BadOverlap) &&
(False(image.flags & ImageFlagBits::CostlyLoad) || is_critical);
if (do_download) {
total_download_size += image.unswizzled_size_bytes;
largest_download_size = std::max(largest_download_size, image.unswizzled_size_bytes);
const bool must_download =
image.IsSafeDownload() && False(image.flags & ImageFlagBits::BadOverlap);
if (!high_priority_mode &&
(must_download || True(image.flags & ImageFlagBits::CostlyLoad))) {
return false;
}
if (must_download) {
auto map = runtime.DownloadStagingBuffer(image.unswizzled_size_bytes);
const auto copies = FullDownloadCopies(image.info);
image.DownloadMemory(map, copies);
runtime.Finish();
SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, map.mapped_span,
swizzle_data_buffer);
}
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, image_id);
}
UnregisterImage(image_id);
DeleteImage(image_id, image.scale_tick > frame_tick + 5);
if (total_used_memory < critical_memory) {
if (aggressive_mode) {
// Sink the aggresiveness.
num_iterations >>= 2;
aggressive_mode = false;
return false;
}
if (high_priority_mode && total_used_memory < expected_memory) {
num_iterations >>= 1;
high_priority_mode = false;
}
}
to_delete.push_back({image_id, do_download, {}});
return false;
};
lru_cache.ForEachItemBelow(frame_tick - ticks_to_destroy, clean_up);
if (total_download_size > 0) {
auto map = runtime.DownloadStagingBuffer(total_download_size);
for (auto& [image_id, do_download, copies] : to_delete) {
if (!do_download) {
continue;
}
Image& image = slot_images[image_id];
copies = FullDownloadCopies(image.info);
image.DownloadMemory(map, copies);
map.offset += Common::AlignUp(image.unswizzled_size_bytes, 64);
}
runtime.Finish();
swizzle_data_buffer.resize_destructive(Common::AlignUp(largest_download_size, 1024));
u64 offset{0};
for (auto& [image_id, do_download, copies] : to_delete) {
Image& image = slot_images[image_id];
if (do_download) {
for (auto& copy : copies) {
copy.buffer_offset += offset;
}
SwizzleImage(*gpu_memory, image.gpu_addr, image.info, copies, map.mapped_span,
swizzle_data_buffer);
offset += Common::AlignUp(image.unswizzled_size_bytes, 64);
}
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, image_id);
}
UnregisterImage(image_id);
DeleteImage(image_id, image.scale_tick > frame_tick + 5);
}
} else {
for (auto& [image_id, do_download, copies] : to_delete) {
Image& image = slot_images[image_id];
if (True(image.flags & ImageFlagBits::Tracked)) {
UntrackImage(image, image_id);
}
UnregisterImage(image_id);
DeleteImage(image_id, image.scale_tick > frame_tick + 5);
}
}
}
template <class P>
void TextureCache<P>::TickFrame() {
// If we can obtain the memory info, use it instead of the estimate.
if (runtime.CanReportMemoryUsage() && frame_tick % 60 == 0) {
if (runtime.CanReportMemoryUsage()) {
total_used_memory = runtime.GetDeviceMemoryUsage();
}
RunGarbageCollector();
if (total_used_memory > minimum_memory) {
RunGarbageCollector();
}
sentenced_images.Tick();
sentenced_framebuffers.Tick();
sentenced_image_view.Tick();

View file

@ -3,8 +3,6 @@
#pragma once
#include <boost/container/small_vector.hpp>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/texture_cache/slot_vector.h"
@ -16,7 +14,6 @@ constexpr size_t MAX_MIP_LEVELS = 14;
constexpr SlotId CORRUPT_ID{0xfffffffe};
using BufferId = SlotId;
using ImageId = SlotId;
using ImageMapId = SlotId;
using ImageViewId = SlotId;
@ -149,12 +146,6 @@ struct BufferCopy {
size_t size;
};
struct BufferCopies {
u64 total_size;
u64 largest_copy;
boost::container::small_vector<BufferCopy, 16> copies;
};
struct SwizzleParameters {
Extent3D num_tiles;
Extent3D block;

View file

@ -914,7 +914,7 @@ void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8
}
}
boost::container::small_vector<BufferImageCopy, 16> FullDownloadCopies(const ImageInfo& info) {
std::vector<BufferImageCopy> FullDownloadCopies(const ImageInfo& info) {
const Extent3D size = info.size;
const u32 bytes_per_block = BytesPerBlock(info.format);
if (info.type == ImageType::Linear) {
@ -942,7 +942,7 @@ boost::container::small_vector<BufferImageCopy, 16> FullDownloadCopies(const Ima
u32 host_offset = 0;
boost::container::small_vector<BufferImageCopy, 16> copies(num_levels);
std::vector<BufferImageCopy> copies(num_levels);
for (s32 level = 0; level < num_levels; ++level) {
const Extent3D level_size = AdjustMipSize(size, level);
const u32 num_blocks_per_layer = NumBlocks(level_size, tile_size);

View file

@ -5,7 +5,6 @@
#include <optional>
#include <span>
#include <boost/container/small_vector.hpp>
#include "common/common_types.h"
#include "common/scratch_buffer.h"
@ -74,8 +73,7 @@ struct OverlapResult {
void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8> output,
std::span<BufferImageCopy> copies);
[[nodiscard]] boost::container::small_vector<BufferImageCopy, 16> FullDownloadCopies(
const ImageInfo& info);
[[nodiscard]] std::vector<BufferImageCopy> FullDownloadCopies(const ImageInfo& info);
[[nodiscard]] Extent3D MipSize(Extent3D size, u32 level);