early-access version 2805
This commit is contained in:
parent
5cf5fef861
commit
44079208eb
11 changed files with 143 additions and 102 deletions
|
@ -1,7 +1,7 @@
|
||||||
yuzu emulator early access
|
yuzu emulator early access
|
||||||
=============
|
=============
|
||||||
|
|
||||||
This is the source code for early-access 2804.
|
This is the source code for early-access 2805.
|
||||||
|
|
||||||
## Legal Notice
|
## Legal Notice
|
||||||
|
|
||||||
|
|
|
@ -47,6 +47,9 @@ void SetCurrentThreadPriority(ThreadPriority new_priority) {
|
||||||
case ThreadPriority::VeryHigh:
|
case ThreadPriority::VeryHigh:
|
||||||
windows_priority = THREAD_PRIORITY_HIGHEST;
|
windows_priority = THREAD_PRIORITY_HIGHEST;
|
||||||
break;
|
break;
|
||||||
|
case ThreadPriority::Critical:
|
||||||
|
windows_priority = THREAD_PRIORITY_TIME_CRITICAL;
|
||||||
|
break;
|
||||||
default:
|
default:
|
||||||
windows_priority = THREAD_PRIORITY_NORMAL;
|
windows_priority = THREAD_PRIORITY_NORMAL;
|
||||||
break;
|
break;
|
||||||
|
@ -59,9 +62,10 @@ void SetCurrentThreadPriority(ThreadPriority new_priority) {
|
||||||
void SetCurrentThreadPriority(ThreadPriority new_priority) {
|
void SetCurrentThreadPriority(ThreadPriority new_priority) {
|
||||||
pthread_t this_thread = pthread_self();
|
pthread_t this_thread = pthread_self();
|
||||||
|
|
||||||
s32 max_prio = sched_get_priority_max(SCHED_OTHER);
|
const auto scheduling_type = SCHED_OTHER;
|
||||||
s32 min_prio = sched_get_priority_min(SCHED_OTHER);
|
s32 max_prio = sched_get_priority_max(scheduling_type);
|
||||||
u32 level = static_cast<u32>(new_priority) + 1;
|
s32 min_prio = sched_get_priority_min(scheduling_type);
|
||||||
|
u32 level = std::max(static_cast<u32>(new_priority) + 1, 4U);
|
||||||
|
|
||||||
struct sched_param params;
|
struct sched_param params;
|
||||||
if (max_prio > min_prio) {
|
if (max_prio > min_prio) {
|
||||||
|
@ -70,7 +74,7 @@ void SetCurrentThreadPriority(ThreadPriority new_priority) {
|
||||||
params.sched_priority = min_prio - ((min_prio - max_prio) * level) / 4;
|
params.sched_priority = min_prio - ((min_prio - max_prio) * level) / 4;
|
||||||
}
|
}
|
||||||
|
|
||||||
pthread_setschedparam(this_thread, SCHED_OTHER, ¶ms);
|
pthread_setschedparam(this_thread, scheduling_type, ¶ms);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -92,6 +92,7 @@ enum class ThreadPriority : u32 {
|
||||||
Normal = 1,
|
Normal = 1,
|
||||||
High = 2,
|
High = 2,
|
||||||
VeryHigh = 3,
|
VeryHigh = 3,
|
||||||
|
Critical = 4,
|
||||||
};
|
};
|
||||||
|
|
||||||
void SetCurrentThreadPriority(ThreadPriority new_priority);
|
void SetCurrentThreadPriority(ThreadPriority new_priority);
|
||||||
|
|
|
@ -30,6 +30,10 @@ namespace Common {
|
||||||
#else
|
#else
|
||||||
return _udiv128(r[1], r[0], d, &remainder);
|
return _udiv128(r[1], r[0], d, &remainder);
|
||||||
#endif
|
#endif
|
||||||
|
#else
|
||||||
|
#ifdef __SIZEOF_INT128__
|
||||||
|
const auto product = static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b);
|
||||||
|
return static_cast<u64>(product / d);
|
||||||
#else
|
#else
|
||||||
const u64 diva = a / d;
|
const u64 diva = a / d;
|
||||||
const u64 moda = a % d;
|
const u64 moda = a % d;
|
||||||
|
@ -37,6 +41,7 @@ namespace Common {
|
||||||
const u64 modb = b % d;
|
const u64 modb = b % d;
|
||||||
return diva * b + moda * divb + moda * modb / d;
|
return diva * b + moda * divb + moda * modb / d;
|
||||||
#endif
|
#endif
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// This function multiplies 2 u64 values and produces a u128 value;
|
// This function multiplies 2 u64 values and produces a u128 value;
|
||||||
|
|
|
@ -65,8 +65,10 @@ NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequen
|
||||||
u64 rtsc_frequency_)
|
u64 rtsc_frequency_)
|
||||||
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
|
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
|
||||||
rtsc_frequency_} {
|
rtsc_frequency_} {
|
||||||
time_point.inner.last_measure = FencedRDTSC();
|
TimePoint new_time_point{};
|
||||||
time_point.inner.accumulated_ticks = 0U;
|
new_time_point.last_measure = FencedRDTSC();
|
||||||
|
new_time_point.accumulated_ticks = 0U;
|
||||||
|
time_point.store(new_time_point);
|
||||||
ns_rtsc_factor = GetFixedPoint64Factor(NS_RATIO, rtsc_frequency);
|
ns_rtsc_factor = GetFixedPoint64Factor(NS_RATIO, rtsc_frequency);
|
||||||
us_rtsc_factor = GetFixedPoint64Factor(US_RATIO, rtsc_frequency);
|
us_rtsc_factor = GetFixedPoint64Factor(US_RATIO, rtsc_frequency);
|
||||||
ms_rtsc_factor = GetFixedPoint64Factor(MS_RATIO, rtsc_frequency);
|
ms_rtsc_factor = GetFixedPoint64Factor(MS_RATIO, rtsc_frequency);
|
||||||
|
@ -76,34 +78,31 @@ NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequen
|
||||||
|
|
||||||
u64 NativeClock::GetRTSC() {
|
u64 NativeClock::GetRTSC() {
|
||||||
TimePoint new_time_point{};
|
TimePoint new_time_point{};
|
||||||
TimePoint current_time_point{};
|
TimePoint current_time_point = time_point.load(std::memory_order_acquire);
|
||||||
|
|
||||||
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
|
|
||||||
do {
|
do {
|
||||||
const u64 current_measure = FencedRDTSC();
|
const u64 current_measure = FencedRDTSC();
|
||||||
u64 diff = current_measure - current_time_point.inner.last_measure;
|
u64 diff = current_measure - current_time_point.last_measure;
|
||||||
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
|
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
|
||||||
new_time_point.inner.last_measure = current_measure > current_time_point.inner.last_measure
|
new_time_point.last_measure = current_measure > current_time_point.last_measure
|
||||||
? current_measure
|
? current_measure
|
||||||
: current_time_point.inner.last_measure;
|
: current_time_point.last_measure;
|
||||||
new_time_point.inner.accumulated_ticks = current_time_point.inner.accumulated_ticks + diff;
|
new_time_point.accumulated_ticks = current_time_point.accumulated_ticks + diff;
|
||||||
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
|
} while (!time_point.compare_exchange_weak(
|
||||||
current_time_point.pack, current_time_point.pack));
|
current_time_point, new_time_point, std::memory_order_release, std::memory_order_acquire));
|
||||||
/// The clock cannot be more precise than the guest timer, remove the lower bits
|
/// The clock cannot be more precise than the guest timer, remove the lower bits
|
||||||
return new_time_point.inner.accumulated_ticks & inaccuracy_mask;
|
return new_time_point.accumulated_ticks;
|
||||||
}
|
}
|
||||||
|
|
||||||
void NativeClock::Pause(bool is_paused) {
|
void NativeClock::Pause(bool is_paused) {
|
||||||
if (!is_paused) {
|
if (!is_paused) {
|
||||||
TimePoint current_time_point{};
|
|
||||||
TimePoint new_time_point{};
|
TimePoint new_time_point{};
|
||||||
|
TimePoint current_time_point = time_point.load(std::memory_order_acquire);
|
||||||
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
|
|
||||||
do {
|
do {
|
||||||
new_time_point.pack = current_time_point.pack;
|
new_time_point = current_time_point;
|
||||||
new_time_point.inner.last_measure = FencedRDTSC();
|
new_time_point.last_measure = FencedRDTSC();
|
||||||
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
|
} while (!time_point.compare_exchange_weak(current_time_point, new_time_point,
|
||||||
current_time_point.pack, current_time_point.pack));
|
std::memory_order_release,
|
||||||
|
std::memory_order_acquire));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -3,6 +3,7 @@
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include <atomic>
|
||||||
#include "common/wall_clock.h"
|
#include "common/wall_clock.h"
|
||||||
|
|
||||||
namespace Common {
|
namespace Common {
|
||||||
|
@ -28,21 +29,12 @@ public:
|
||||||
private:
|
private:
|
||||||
u64 GetRTSC();
|
u64 GetRTSC();
|
||||||
|
|
||||||
union alignas(16) TimePoint {
|
struct alignas(16) TimePoint {
|
||||||
TimePoint() : pack{} {}
|
|
||||||
u128 pack{};
|
|
||||||
struct Inner {
|
|
||||||
u64 last_measure{};
|
u64 last_measure{};
|
||||||
u64 accumulated_ticks{};
|
u64 accumulated_ticks{};
|
||||||
} inner;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
/// value used to reduce the native clocks accuracy as some apss rely on
|
std::atomic<TimePoint> time_point;
|
||||||
/// undefined behavior where the level of accuracy in the clock shouldn't
|
|
||||||
/// be higher.
|
|
||||||
static constexpr u64 inaccuracy_mask = ~(UINT64_C(0x400) - 1);
|
|
||||||
|
|
||||||
TimePoint time_point;
|
|
||||||
// factors
|
// factors
|
||||||
u64 clock_rtsc_factor{};
|
u64 clock_rtsc_factor{};
|
||||||
u64 cpu_rtsc_factor{};
|
u64 cpu_rtsc_factor{};
|
||||||
|
|
|
@ -7,6 +7,7 @@
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
|
|
||||||
#include "common/microprofile.h"
|
#include "common/microprofile.h"
|
||||||
|
#include "common/thread.h"
|
||||||
#include "core/core_timing.h"
|
#include "core/core_timing.h"
|
||||||
#include "core/core_timing_util.h"
|
#include "core/core_timing_util.h"
|
||||||
#include "core/hardware_properties.h"
|
#include "core/hardware_properties.h"
|
||||||
|
@ -45,7 +46,7 @@ void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
||||||
constexpr char name[] = "yuzu:HostTiming";
|
constexpr char name[] = "yuzu:HostTiming";
|
||||||
MicroProfileOnThreadCreate(name);
|
MicroProfileOnThreadCreate(name);
|
||||||
Common::SetCurrentThreadName(name);
|
Common::SetCurrentThreadName(name);
|
||||||
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
|
Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
|
||||||
instance.on_thread_init();
|
instance.on_thread_init();
|
||||||
instance.ThreadLoop();
|
instance.ThreadLoop();
|
||||||
MicroProfileOnThreadExit();
|
MicroProfileOnThreadExit();
|
||||||
|
@ -59,68 +60,96 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
|
||||||
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
|
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
|
||||||
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
||||||
if (is_multicore) {
|
if (is_multicore) {
|
||||||
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
const auto hardware_concurrency = std::thread::hardware_concurrency();
|
||||||
|
worker_threads.emplace_back(ThreadEntry, std::ref(*this));
|
||||||
|
if (hardware_concurrency > 8) {
|
||||||
|
worker_threads.emplace_back(ThreadEntry, std::ref(*this));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::Shutdown() {
|
void CoreTiming::Shutdown() {
|
||||||
paused = true;
|
is_paused = true;
|
||||||
shutting_down = true;
|
shutting_down = true;
|
||||||
pause_event.Set();
|
{
|
||||||
event.Set();
|
std::unique_lock main_lock(event_mutex);
|
||||||
if (timer_thread) {
|
event_cv.notify_all();
|
||||||
timer_thread->join();
|
wait_pause_cv.notify_all();
|
||||||
}
|
}
|
||||||
|
for (auto& thread : worker_threads) {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
|
worker_threads.clear();
|
||||||
ClearPendingEvents();
|
ClearPendingEvents();
|
||||||
timer_thread.reset();
|
|
||||||
has_started = false;
|
has_started = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::Pause(bool is_paused) {
|
void CoreTiming::Pause(bool is_paused_) {
|
||||||
paused = is_paused;
|
std::unique_lock main_lock(event_mutex);
|
||||||
pause_event.Set();
|
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
|
||||||
}
|
|
||||||
|
|
||||||
void CoreTiming::SyncPause(bool is_paused) {
|
|
||||||
if (is_paused == paused && paused_set == paused) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
Pause(is_paused);
|
if (is_multicore) {
|
||||||
if (timer_thread) {
|
is_paused = is_paused_;
|
||||||
if (!is_paused) {
|
event_cv.notify_all();
|
||||||
pause_event.Set();
|
if (!is_paused_) {
|
||||||
|
wait_pause_cv.notify_all();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
paused_state.store(is_paused_, std::memory_order_relaxed);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::SyncPause(bool is_paused_) {
|
||||||
|
std::unique_lock main_lock(event_mutex);
|
||||||
|
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (is_multicore) {
|
||||||
|
is_paused = is_paused_;
|
||||||
|
event_cv.notify_all();
|
||||||
|
if (!is_paused_) {
|
||||||
|
wait_pause_cv.notify_all();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
paused_state.store(is_paused_, std::memory_order_relaxed);
|
||||||
|
if (is_multicore) {
|
||||||
|
if (is_paused_) {
|
||||||
|
wait_signal_cv.wait(main_lock, [this] { return pause_count == worker_threads.size(); });
|
||||||
|
} else {
|
||||||
|
wait_signal_cv.wait(main_lock, [this] { return pause_count == 0; });
|
||||||
}
|
}
|
||||||
event.Set();
|
|
||||||
while (paused_set != is_paused)
|
|
||||||
;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool CoreTiming::IsRunning() const {
|
bool CoreTiming::IsRunning() const {
|
||||||
return !paused_set;
|
return !paused_state.load(std::memory_order_acquire);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool CoreTiming::HasPendingEvents() const {
|
bool CoreTiming::HasPendingEvents() const {
|
||||||
return !(wait_set && event_queue.empty());
|
std::unique_lock main_lock(event_mutex);
|
||||||
|
return !event_queue.empty();
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
||||||
const std::shared_ptr<EventType>& event_type,
|
const std::shared_ptr<EventType>& event_type,
|
||||||
std::uintptr_t user_data) {
|
std::uintptr_t user_data) {
|
||||||
{
|
|
||||||
std::scoped_lock scope{basic_lock};
|
std::unique_lock main_lock(event_mutex);
|
||||||
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
|
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
|
||||||
|
|
||||||
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
|
||||||
|
|
||||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
|
||||||
|
if (is_multicore) {
|
||||||
|
event_cv.notify_one();
|
||||||
}
|
}
|
||||||
event.Set();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
||||||
std::uintptr_t user_data) {
|
std::uintptr_t user_data) {
|
||||||
std::scoped_lock scope{basic_lock};
|
std::unique_lock main_lock(event_mutex);
|
||||||
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
|
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
|
||||||
});
|
});
|
||||||
|
@ -168,11 +197,12 @@ u64 CoreTiming::GetClockTicks() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ClearPendingEvents() {
|
void CoreTiming::ClearPendingEvents() {
|
||||||
|
std::unique_lock main_lock(event_mutex);
|
||||||
event_queue.clear();
|
event_queue.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||||||
std::scoped_lock lock{basic_lock};
|
std::unique_lock main_lock(event_mutex);
|
||||||
|
|
||||||
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
return e.type.lock().get() == event_type.get();
|
return e.type.lock().get() == event_type.get();
|
||||||
|
@ -186,21 +216,22 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||||||
}
|
}
|
||||||
|
|
||||||
std::optional<s64> CoreTiming::Advance() {
|
std::optional<s64> CoreTiming::Advance() {
|
||||||
std::scoped_lock lock{advance_lock, basic_lock};
|
|
||||||
global_timer = GetGlobalTimeNs().count();
|
global_timer = GetGlobalTimeNs().count();
|
||||||
|
|
||||||
|
std::unique_lock main_lock(event_mutex);
|
||||||
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||||||
Event evt = std::move(event_queue.front());
|
Event evt = std::move(event_queue.front());
|
||||||
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
event_queue.pop_back();
|
event_queue.pop_back();
|
||||||
basic_lock.unlock();
|
event_mutex.unlock();
|
||||||
|
|
||||||
if (const auto event_type{evt.type.lock()}) {
|
if (const auto event_type{evt.type.lock()}) {
|
||||||
event_type->callback(
|
std::unique_lock lk(event_type->guard);
|
||||||
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
|
event_type->callback(evt.user_data, std::chrono::nanoseconds{static_cast<s64>(
|
||||||
|
GetGlobalTimeNs().count() - evt.time)});
|
||||||
}
|
}
|
||||||
|
|
||||||
basic_lock.lock();
|
event_mutex.lock();
|
||||||
global_timer = GetGlobalTimeNs().count();
|
global_timer = GetGlobalTimeNs().count();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -213,26 +244,34 @@ std::optional<s64> CoreTiming::Advance() {
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ThreadLoop() {
|
void CoreTiming::ThreadLoop() {
|
||||||
|
const auto predicate = [this] { return !event_queue.empty() || is_paused; };
|
||||||
has_started = true;
|
has_started = true;
|
||||||
while (!shutting_down) {
|
while (!shutting_down) {
|
||||||
while (!paused) {
|
while (!is_paused && !shutting_down) {
|
||||||
paused_set = false;
|
|
||||||
const auto next_time = Advance();
|
const auto next_time = Advance();
|
||||||
if (next_time) {
|
if (next_time) {
|
||||||
if (*next_time > 0) {
|
if (*next_time > 0) {
|
||||||
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
||||||
event.WaitFor(next_time_ns);
|
std::unique_lock main_lock(event_mutex);
|
||||||
|
event_cv.wait_for(main_lock, next_time_ns, predicate);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
wait_set = true;
|
std::unique_lock main_lock(event_mutex);
|
||||||
event.Wait();
|
event_cv.wait(main_lock, predicate);
|
||||||
}
|
}
|
||||||
wait_set = false;
|
|
||||||
}
|
}
|
||||||
paused_set = true;
|
std::unique_lock main_lock(event_mutex);
|
||||||
|
pause_count++;
|
||||||
|
if (pause_count == worker_threads.size()) {
|
||||||
clock->Pause(true);
|
clock->Pause(true);
|
||||||
pause_event.Wait();
|
wait_signal_cv.notify_all();
|
||||||
|
}
|
||||||
|
wait_pause_cv.wait(main_lock, [this] { return !is_paused || shutting_down; });
|
||||||
|
pause_count--;
|
||||||
|
if (pause_count == 0) {
|
||||||
clock->Pause(false);
|
clock->Pause(false);
|
||||||
|
wait_signal_cv.notify_all();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -5,6 +5,7 @@
|
||||||
|
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
#include <condition_variable>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
@ -14,7 +15,6 @@
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
#include "common/thread.h"
|
|
||||||
#include "common/wall_clock.h"
|
#include "common/wall_clock.h"
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
@ -32,6 +32,7 @@ struct EventType {
|
||||||
TimedCallback callback;
|
TimedCallback callback;
|
||||||
/// A pointer to the name of the event.
|
/// A pointer to the name of the event.
|
||||||
const std::string name;
|
const std::string name;
|
||||||
|
mutable std::mutex guard;
|
||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -146,19 +147,21 @@ private:
|
||||||
u64 event_fifo_id = 0;
|
u64 event_fifo_id = 0;
|
||||||
|
|
||||||
std::shared_ptr<EventType> ev_lost;
|
std::shared_ptr<EventType> ev_lost;
|
||||||
Common::Event event{};
|
|
||||||
Common::Event pause_event{};
|
|
||||||
std::mutex basic_lock;
|
|
||||||
std::mutex advance_lock;
|
|
||||||
std::unique_ptr<std::thread> timer_thread;
|
|
||||||
std::atomic<bool> paused{};
|
|
||||||
std::atomic<bool> paused_set{};
|
|
||||||
std::atomic<bool> wait_set{};
|
|
||||||
std::atomic<bool> shutting_down{};
|
|
||||||
std::atomic<bool> has_started{};
|
std::atomic<bool> has_started{};
|
||||||
std::function<void()> on_thread_init{};
|
std::function<void()> on_thread_init{};
|
||||||
|
|
||||||
|
std::vector<std::thread> worker_threads;
|
||||||
|
|
||||||
|
std::condition_variable event_cv;
|
||||||
|
std::condition_variable wait_pause_cv;
|
||||||
|
std::condition_variable wait_signal_cv;
|
||||||
|
mutable std::mutex event_mutex;
|
||||||
|
|
||||||
|
std::atomic<bool> paused_state{};
|
||||||
|
bool is_paused{};
|
||||||
|
bool shutting_down{};
|
||||||
bool is_multicore{};
|
bool is_multicore{};
|
||||||
|
size_t pause_count{};
|
||||||
|
|
||||||
/// Cycle timing
|
/// Cycle timing
|
||||||
u64 ticks{};
|
u64 ticks{};
|
||||||
|
|
|
@ -41,22 +41,18 @@ NvResult NvMap::Handle::Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress)
|
||||||
size = Common::AlignUp(size, PAGE_SIZE);
|
size = Common::AlignUp(size, PAGE_SIZE);
|
||||||
aligned_size = Common::AlignUp(size, align);
|
aligned_size = Common::AlignUp(size, align);
|
||||||
address = pAddress;
|
address = pAddress;
|
||||||
|
|
||||||
// TODO: pin init
|
|
||||||
|
|
||||||
allocated = true;
|
allocated = true;
|
||||||
|
|
||||||
return NvResult::Success;
|
return NvResult::Success;
|
||||||
}
|
}
|
||||||
|
|
||||||
NvResult NvMap::Handle::Duplicate(bool internal_session) {
|
NvResult NvMap::Handle::Duplicate(bool internal_session) {
|
||||||
|
std::scoped_lock lock(mutex);
|
||||||
// Unallocated handles cannot be duplicated as duplication requires memory accounting (in HOS)
|
// Unallocated handles cannot be duplicated as duplication requires memory accounting (in HOS)
|
||||||
if (!allocated) [[unlikely]] {
|
if (!allocated) [[unlikely]] {
|
||||||
return NvResult::BadValue;
|
return NvResult::BadValue;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::scoped_lock lock(mutex);
|
|
||||||
|
|
||||||
// If we internally use FromId the duplication tracking of handles won't work accurately due to
|
// If we internally use FromId the duplication tracking of handles won't work accurately due to
|
||||||
// us not implementing per-process handle refs.
|
// us not implementing per-process handle refs.
|
||||||
if (internal_session) {
|
if (internal_session) {
|
||||||
|
|
|
@ -270,12 +270,12 @@ NvResult nvhost_gpu::SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, std::vector<u8>
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
gpu.PushGPUEntries(bind_id, std::move(entries));
|
|
||||||
params.fence.id = channel_syncpoint;
|
params.fence.id = channel_syncpoint;
|
||||||
|
|
||||||
u32 increment{(flags.fence_increment.Value() != 0 ? 2 : 0) +
|
u32 increment{(flags.fence_increment.Value() != 0 ? 2 : 0) +
|
||||||
(flags.increment_value.Value() != 0 ? params.fence.value : 0)};
|
(flags.increment_value.Value() != 0 ? params.fence.value : 0)};
|
||||||
params.fence.value = syncpoint_manager.IncrementSyncpointMaxExt(channel_syncpoint, increment);
|
params.fence.value = syncpoint_manager.IncrementSyncpointMaxExt(channel_syncpoint, increment);
|
||||||
|
gpu.PushGPUEntries(bind_id, std::move(entries));
|
||||||
|
|
||||||
if (flags.fence_increment.Value()) {
|
if (flags.fence_increment.Value()) {
|
||||||
if (flags.suppress_wfi.Value()) {
|
if (flags.suppress_wfi.Value()) {
|
||||||
|
|
|
@ -8,6 +8,7 @@
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
#include <mutex>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
|
@ -21,13 +22,14 @@ std::array<s64, 5> delays{};
|
||||||
|
|
||||||
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
||||||
u64 expected_callback = 0;
|
u64 expected_callback = 0;
|
||||||
|
std::mutex control_mutex;
|
||||||
|
|
||||||
template <unsigned int IDX>
|
template <unsigned int IDX>
|
||||||
void HostCallbackTemplate(std::uintptr_t user_data, std::chrono::nanoseconds ns_late) {
|
void HostCallbackTemplate(std::uintptr_t user_data, std::chrono::nanoseconds ns_late) {
|
||||||
|
std::unique_lock<std::mutex> lk(control_mutex);
|
||||||
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
||||||
callbacks_ran_flags.set(IDX);
|
callbacks_ran_flags.set(IDX);
|
||||||
REQUIRE(CB_IDS[IDX] == user_data);
|
REQUIRE(CB_IDS[IDX] == user_data);
|
||||||
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
|
|
||||||
delays[IDX] = ns_late.count();
|
delays[IDX] = ns_late.count();
|
||||||
++expected_callback;
|
++expected_callback;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue