early-access version 2807

This commit is contained in:
pineappleEA 2022-06-30 09:39:34 +02:00
parent ad703668f3
commit 514bed1c36
5 changed files with 247 additions and 216 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 2806. This is the source code for early-access 2807.
## Legal Notice ## Legal Notice

View file

@ -23,9 +23,29 @@ template <typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa
bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo = EmptyStruct> bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo = EmptyStruct>
requires AddressSpaceValid<VaType, AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits>
class FlatAddressSpaceMap { class FlatAddressSpaceMap {
private: public:
std::function<void(VaType, VaType)> /// The maximum VA that this AS can technically reach
unmapCallback{}; //!< Callback called when the mappings in an region have changed static constexpr VaType VaMaximum{(1ULL << (AddressSpaceBits - 1)) +
((1ULL << (AddressSpaceBits - 1)) - 1)};
explicit FlatAddressSpaceMap(VaType va_limit,
std::function<void(VaType, VaType)> unmap_callback = {});
FlatAddressSpaceMap() = default;
void Map(VaType virt, PaType phys, VaType size, ExtraBlockInfo extra_info = {}) {
std::scoped_lock lock(block_mutex);
MapLocked(virt, phys, size, extra_info);
}
void Unmap(VaType virt, VaType size) {
std::scoped_lock lock(block_mutex);
UnmapLocked(virt, size);
}
VaType GetVALimit() const {
return va_limit;
}
protected: protected:
/** /**
@ -33,68 +53,55 @@ protected:
* another block with a different phys address is hit * another block with a different phys address is hit
*/ */
struct Block { struct Block {
VaType virt{UnmappedVa}; //!< VA of the block /// VA of the block
PaType phys{UnmappedPa}; //!< PA of the block, will increase 1-1 with VA until a new block VaType virt{UnmappedVa};
//!< is encountered /// PA of the block, will increase 1-1 with VA until a new block is encountered
[[no_unique_address]] ExtraBlockInfo extraInfo; PaType phys{UnmappedPa};
[[no_unique_address]] ExtraBlockInfo extra_info;
Block() = default; Block() = default;
Block(VaType virt_, PaType phys_, ExtraBlockInfo extraInfo_) Block(VaType virt_, PaType phys_, ExtraBlockInfo extra_info_)
: virt(virt_), phys(phys_), extraInfo(extraInfo_) {} : virt(virt_), phys(phys_), extra_info(extra_info_) {}
constexpr bool Valid() { bool Valid() const {
return virt != UnmappedVa; return virt != UnmappedVa;
} }
constexpr bool Mapped() { bool Mapped() const {
return phys != UnmappedPa; return phys != UnmappedPa;
} }
constexpr bool Unmapped() { bool Unmapped() const {
return phys == UnmappedPa; return phys == UnmappedPa;
} }
bool operator<(const VaType& pVirt) const { bool operator<(const VaType& p_virt) const {
return virt < pVirt; return virt < p_virt;
} }
}; };
std::mutex blockMutex;
std::vector<Block> blocks{Block{}};
/** /**
* @brief Maps a PA range into the given AS region * @brief Maps a PA range into the given AS region
* @note blockMutex MUST be locked when calling this * @note block_mutex MUST be locked when calling this
*/ */
void MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo); void MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extra_info);
/** /**
* @brief Unmaps the given range and merges it with other unmapped regions * @brief Unmaps the given range and merges it with other unmapped regions
* @note blockMutex MUST be locked when calling this * @note block_mutex MUST be locked when calling this
*/ */
void UnmapLocked(VaType virt, VaType size); void UnmapLocked(VaType virt, VaType size);
public: std::mutex block_mutex;
static constexpr VaType VaMaximum{(1ULL << (AddressSpaceBits - 1)) + std::vector<Block> blocks{Block{}};
((1ULL << (AddressSpaceBits - 1)) -
1)}; //!< The maximum VA that this AS can technically reach
VaType vaLimit{VaMaximum}; //!< A soft limit on the maximum VA of the AS /// a soft limit on the maximum VA of the AS
VaType va_limit{VaMaximum};
FlatAddressSpaceMap(VaType vaLimit, std::function<void(VaType, VaType)> unmapCallback = {}); private:
/// Callback called when the mappings in an region have changed
FlatAddressSpaceMap() = default; std::function<void(VaType, VaType)> unmap_callback{};
void Map(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo = {}) {
std::scoped_lock lock(blockMutex);
MapLocked(virt, phys, size, extraInfo);
}
void Unmap(VaType virt, VaType size) {
std::scoped_lock lock(blockMutex);
UnmapLocked(virt, size);
}
}; };
/** /**
@ -108,14 +115,8 @@ class FlatAllocator
private: private:
using Base = FlatAddressSpaceMap<VaType, UnmappedVa, bool, false, false, AddressSpaceBits>; using Base = FlatAddressSpaceMap<VaType, UnmappedVa, bool, false, false, AddressSpaceBits>;
VaType currentLinearAllocEnd; //!< The end address for the initial linear allocation pass, once
//!< this reaches the AS limit the slower allocation path will be
//!< used
public: public:
VaType vaStart; //!< The base VA of the allocator, no allocations will be below this explicit FlatAllocator(VaType virt_start, VaType va_limit = Base::VaMaximum);
FlatAllocator(VaType vaStart, VaType vaLimit = Base::VaMaximum);
/** /**
* @brief Allocates a region in the AS of the given size and returns its address * @brief Allocates a region in the AS of the given size and returns its address
@ -131,5 +132,19 @@ public:
* @brief Frees an AS region so it can be used again * @brief Frees an AS region so it can be used again
*/ */
void Free(VaType virt, VaType size); void Free(VaType virt, VaType size);
VaType GetVAStart() const {
return virt_start;
}
private:
/// The base VA of the allocator, no allocations will be below this
VaType virt_start;
/**
* The end address for the initial linear allocation pass
* Once this reaches the AS limit the slower allocation path will be used
*/
VaType current_linear_alloc_end;
}; };
} // namespace Common } // namespace Common

View file

@ -30,137 +30,151 @@
FlatAllocator<VaType, UnmappedVa, AddressSpaceBits> FlatAllocator<VaType, UnmappedVa, AddressSpaceBits>
namespace Common { namespace Common {
MAP_MEMBER_CONST()::FlatAddressSpaceMap(VaType vaLimit_, MAP_MEMBER_CONST()::FlatAddressSpaceMap(VaType va_limit_,
std::function<void(VaType, VaType)> unmapCallback_) std::function<void(VaType, VaType)> unmap_callback_)
: unmapCallback(std::move(unmapCallback_)), vaLimit(vaLimit_) { : va_limit{va_limit_}, unmap_callback{std::move(unmap_callback_)} {
if (vaLimit > VaMaximum) if (va_limit > VaMaximum) {
UNREACHABLE_MSG("Invalid VA limit!"); UNREACHABLE_MSG("Invalid VA limit!");
} }
}
MAP_MEMBER(void)::MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo) { MAP_MEMBER(void)::MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extra_info) {
VaType virtEnd{virt + size}; VaType virt_end{virt + size};
if (virtEnd > vaLimit) if (virt_end > va_limit) {
UNREACHABLE_MSG("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", UNREACHABLE_MSG(
virtEnd, vaLimit); "Trying to map a block past the VA limit: virt_end: 0x{:X}, va_limit: 0x{:X}", virt_end,
va_limit);
}
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)}; auto block_end_successor{std::lower_bound(blocks.begin(), blocks.end(), virt_end)};
if (blockEndSuccessor == blocks.begin()) if (block_end_successor == blocks.begin()) {
UNREACHABLE_MSG("Trying to map a block before the VA start: virtEnd: 0x{:X}", virtEnd); UNREACHABLE_MSG("Trying to map a block before the VA start: virt_end: 0x{:X}", virt_end);
}
auto blockEndPredecessor{std::prev(blockEndSuccessor)}; auto block_end_predecessor{std::prev(block_end_successor)};
if (blockEndSuccessor != blocks.end()) { if (block_end_successor != blocks.end()) {
// We have blocks in front of us, if one is directly in front then we don't have to add a // We have blocks in front of us, if one is directly in front then we don't have to add a
// tail // tail
if (blockEndSuccessor->virt != virtEnd) { if (block_end_successor->virt != virt_end) {
PaType tailPhys{[&]() -> PaType { PaType tailPhys{[&]() -> PaType {
if constexpr (!PaContigSplit) { if constexpr (!PaContigSplit) {
return blockEndPredecessor // Always propagate unmapped regions rather than calculating offset
->phys; // Always propagate unmapped regions rather than calculating offset return block_end_predecessor->phys;
} else { } else {
if (blockEndPredecessor->Unmapped()) if (block_end_predecessor->Unmapped()) {
return blockEndPredecessor->phys; // Always propagate unmapped regions // Always propagate unmapped regions rather than calculating offset
// rather than calculating offset return block_end_predecessor->phys;
else } else {
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt; return block_end_predecessor->phys + virt_end - block_end_predecessor->virt;
}
} }
}()}; }()};
if (blockEndPredecessor->virt >= virt) { if (block_end_predecessor->virt >= virt) {
// If this block's start would be overlapped by the map then reuse it as a tail // If this block's start would be overlapped by the map then reuse it as a tail
// block // block
blockEndPredecessor->virt = virtEnd; block_end_predecessor->virt = virt_end;
blockEndPredecessor->phys = tailPhys; block_end_predecessor->phys = tailPhys;
blockEndPredecessor->extraInfo = blockEndPredecessor->extraInfo; block_end_predecessor->extra_info = block_end_predecessor->extra_info;
// No longer predecessor anymore // No longer predecessor anymore
blockEndSuccessor = blockEndPredecessor--; block_end_successor = block_end_predecessor--;
} else { } else {
// Else insert a new one and we're done // Else insert a new one and we're done
blocks.insert(blockEndSuccessor, blocks.insert(block_end_successor,
{Block(virt, phys, extraInfo), {Block(virt, phys, extra_info),
Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)}); Block(virt_end, tailPhys, block_end_predecessor->extra_info)});
if (unmapCallback) if (unmap_callback) {
unmapCallback(virt, size); unmap_callback(virt, size);
}
return; return;
} }
} }
} else { } else {
// blockEndPredecessor will always be unmapped as blocks has to be terminated by an unmapped // block_end_predecessor will always be unmapped as blocks has to be terminated by an
// chunk // unmapped chunk
if (blockEndPredecessor != blocks.begin() && blockEndPredecessor->virt >= virt) { if (block_end_predecessor != blocks.begin() && block_end_predecessor->virt >= virt) {
// Move the unmapped block start backwards // Move the unmapped block start backwards
blockEndPredecessor->virt = virtEnd; block_end_predecessor->virt = virt_end;
// No longer predecessor anymore // No longer predecessor anymore
blockEndSuccessor = blockEndPredecessor--; block_end_successor = block_end_predecessor--;
} else { } else {
// Else insert a new one and we're done // Else insert a new one and we're done
blocks.insert(blockEndSuccessor, blocks.insert(block_end_successor,
{Block(virt, phys, extraInfo), Block(virtEnd, UnmappedPa, {})}); {Block(virt, phys, extra_info), Block(virt_end, UnmappedPa, {})});
if (unmapCallback) if (unmap_callback) {
unmapCallback(virt, size); unmap_callback(virt, size);
}
return; return;
} }
} }
auto blockStartSuccessor{blockEndSuccessor}; auto block_start_successor{block_end_successor};
// Walk the block vector to find the start successor as this is more efficient than another // Walk the block vector to find the start successor as this is more efficient than another
// binary search in most scenarios // binary search in most scenarios
while (std::prev(blockStartSuccessor)->virt >= virt) while (std::prev(block_start_successor)->virt >= virt) {
blockStartSuccessor--; block_start_successor--;
// Check that the start successor is either the end block or something in between
if (blockStartSuccessor->virt > virtEnd) {
UNREACHABLE_MSG("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt);
} else if (blockStartSuccessor->virt == virtEnd) {
// We need to create a new block as there are none spare that we would overwrite
blocks.insert(blockStartSuccessor, Block(virt, phys, extraInfo));
} else {
// Erase overwritten blocks
if (auto eraseStart{std::next(blockStartSuccessor)}; eraseStart != blockEndSuccessor)
blocks.erase(eraseStart, blockEndSuccessor);
// Reuse a block that would otherwise be overwritten as a start block
blockStartSuccessor->virt = virt;
blockStartSuccessor->phys = phys;
blockStartSuccessor->extraInfo = extraInfo;
} }
if (unmapCallback) // Check that the start successor is either the end block or something in between
unmapCallback(virt, size); if (block_start_successor->virt > virt_end) {
UNREACHABLE_MSG("Unsorted block in AS map: virt: 0x{:X}", block_start_successor->virt);
} else if (block_start_successor->virt == virt_end) {
// We need to create a new block as there are none spare that we would overwrite
blocks.insert(block_start_successor, Block(virt, phys, extra_info));
} else {
// Erase overwritten blocks
if (auto eraseStart{std::next(block_start_successor)}; eraseStart != block_end_successor) {
blocks.erase(eraseStart, block_end_successor);
}
// Reuse a block that would otherwise be overwritten as a start block
block_start_successor->virt = virt;
block_start_successor->phys = phys;
block_start_successor->extra_info = extra_info;
}
if (unmap_callback) {
unmap_callback(virt, size);
}
} }
MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) { MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) {
VaType virtEnd{virt + size}; VaType virt_end{virt + size};
if (virtEnd > vaLimit) if (virt_end > va_limit) {
UNREACHABLE_MSG("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", UNREACHABLE_MSG(
virtEnd, vaLimit); "Trying to map a block past the VA limit: virt_end: 0x{:X}, va_limit: 0x{:X}", virt_end,
va_limit);
}
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)}; auto block_end_successor{std::lower_bound(blocks.begin(), blocks.end(), virt_end)};
if (blockEndSuccessor == blocks.begin()) if (block_end_successor == blocks.begin()) {
UNREACHABLE_MSG("Trying to unmap a block before the VA start: virtEnd: 0x{:X}", virtEnd); UNREACHABLE_MSG("Trying to unmap a block before the VA start: virt_end: 0x{:X}", virt_end);
}
auto blockEndPredecessor{std::prev(blockEndSuccessor)}; auto block_end_predecessor{std::prev(block_end_successor)};
auto walkBackToPredecessor{[&](auto iter) { auto walk_back_to_predecessor{[&](auto iter) {
while (iter->virt >= virt) while (iter->virt >= virt) {
iter--; iter--;
}
return iter; return iter;
}}; }};
auto eraseBlocksWithEndUnmapped{[&](auto unmappedEnd) { auto erase_blocks_with_end_unmapped{[&](auto unmappedEnd) {
auto blockStartPredecessor{walkBackToPredecessor(unmappedEnd)}; auto block_start_predecessor{walk_back_to_predecessor(unmappedEnd)};
auto blockStartSuccessor{std::next(blockStartPredecessor)}; auto block_start_successor{std::next(block_start_predecessor)};
auto eraseEnd{[&]() { auto eraseEnd{[&]() {
if (blockStartPredecessor->Unmapped()) { if (block_start_predecessor->Unmapped()) {
// If the start predecessor is unmapped then we can erase everything in our region // If the start predecessor is unmapped then we can erase everything in our region
// and be done // and be done
return std::next(unmappedEnd); return std::next(unmappedEnd);
@ -174,158 +188,171 @@ MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) {
// We can't have two unmapped regions after each other // We can't have two unmapped regions after each other
if (eraseEnd != blocks.end() && if (eraseEnd != blocks.end() &&
(eraseEnd == blockStartSuccessor || (eraseEnd == block_start_successor ||
(blockStartPredecessor->Unmapped() && eraseEnd->Unmapped()))) (block_start_predecessor->Unmapped() && eraseEnd->Unmapped()))) {
UNREACHABLE_MSG("Multiple contiguous unmapped regions are unsupported!"); UNREACHABLE_MSG("Multiple contiguous unmapped regions are unsupported!");
}
blocks.erase(blockStartSuccessor, eraseEnd); blocks.erase(block_start_successor, eraseEnd);
}}; }};
// We can avoid any splitting logic if these are the case // We can avoid any splitting logic if these are the case
if (blockEndPredecessor->Unmapped()) { if (block_end_predecessor->Unmapped()) {
if (blockEndPredecessor->virt > virt) if (block_end_predecessor->virt > virt) {
eraseBlocksWithEndUnmapped(blockEndPredecessor); erase_blocks_with_end_unmapped(block_end_predecessor);
}
if (unmapCallback) if (unmap_callback) {
unmapCallback(virt, size); unmap_callback(virt, size);
}
return; // The region is unmapped, bail out early return; // The region is unmapped, bail out early
} else if (blockEndSuccessor->virt == virtEnd && blockEndSuccessor->Unmapped()) { } else if (block_end_successor->virt == virt_end && block_end_successor->Unmapped()) {
eraseBlocksWithEndUnmapped(blockEndSuccessor); erase_blocks_with_end_unmapped(block_end_successor);
if (unmapCallback) if (unmap_callback) {
unmapCallback(virt, size); unmap_callback(virt, size);
}
return; // The region is unmapped here and doesn't need splitting, bail out early return; // The region is unmapped here and doesn't need splitting, bail out early
} else if (blockEndSuccessor == blocks.end()) { } else if (block_end_successor == blocks.end()) {
// This should never happen as the end should always follow an unmapped block // This should never happen as the end should always follow an unmapped block
UNREACHABLE_MSG("Unexpected Memory Manager state!"); UNREACHABLE_MSG("Unexpected Memory Manager state!");
} else if (blockEndSuccessor->virt != virtEnd) { } else if (block_end_successor->virt != virt_end) {
// If one block is directly in front then we don't have to add a tail // If one block is directly in front then we don't have to add a tail
// The previous block is mapped so we will need to add a tail with an offset // The previous block is mapped so we will need to add a tail with an offset
PaType tailPhys{[&]() { PaType tailPhys{[&]() {
if constexpr (PaContigSplit) if constexpr (PaContigSplit) {
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt; return block_end_predecessor->phys + virt_end - block_end_predecessor->virt;
else } else {
return blockEndPredecessor->phys; return block_end_predecessor->phys;
}
}()}; }()};
if (blockEndPredecessor->virt >= virt) { if (block_end_predecessor->virt >= virt) {
// If this block's start would be overlapped by the unmap then reuse it as a tail block // If this block's start would be overlapped by the unmap then reuse it as a tail block
blockEndPredecessor->virt = virtEnd; block_end_predecessor->virt = virt_end;
blockEndPredecessor->phys = tailPhys; block_end_predecessor->phys = tailPhys;
// No longer predecessor anymore // No longer predecessor anymore
blockEndSuccessor = blockEndPredecessor--; block_end_successor = block_end_predecessor--;
} else { } else {
blocks.insert(blockEndSuccessor, blocks.insert(block_end_successor,
{Block(virt, UnmappedPa, {}), {Block(virt, UnmappedPa, {}),
Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)}); Block(virt_end, tailPhys, block_end_predecessor->extra_info)});
if (unmapCallback) if (unmap_callback) {
unmapCallback(virt, size); unmap_callback(virt, size);
}
return; // The previous block is mapped and ends before // The previous block is mapped and ends before
return;
} }
} }
// Walk the block vector to find the start predecessor as this is more efficient than another // Walk the block vector to find the start predecessor as this is more efficient than another
// binary search in most scenarios // binary search in most scenarios
auto blockStartPredecessor{walkBackToPredecessor(blockEndSuccessor)}; auto block_start_predecessor{walk_back_to_predecessor(block_end_successor)};
auto blockStartSuccessor{std::next(blockStartPredecessor)}; auto block_start_successor{std::next(block_start_predecessor)};
if (blockStartSuccessor->virt > virtEnd) { if (block_start_successor->virt > virt_end) {
UNREACHABLE_MSG("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt); UNREACHABLE_MSG("Unsorted block in AS map: virt: 0x{:X}", block_start_successor->virt);
} else if (blockStartSuccessor->virt == virtEnd) { } else if (block_start_successor->virt == virt_end) {
// There are no blocks between the start and the end that would let us skip inserting a new // There are no blocks between the start and the end that would let us skip inserting a new
// one for head // one for head
// The previous block is may be unmapped, if so we don't need to insert any unmaps after it // The previous block is may be unmapped, if so we don't need to insert any unmaps after it
if (blockStartPredecessor->Mapped()) if (block_start_predecessor->Mapped()) {
blocks.insert(blockStartSuccessor, Block(virt, UnmappedPa, {})); blocks.insert(block_start_successor, Block(virt, UnmappedPa, {}));
} else if (blockStartPredecessor->Unmapped()) { }
} else if (block_start_predecessor->Unmapped()) {
// If the previous block is unmapped // If the previous block is unmapped
blocks.erase(blockStartSuccessor, blockEndPredecessor); blocks.erase(block_start_successor, block_end_predecessor);
} else { } else {
// Erase overwritten blocks, skipping the first one as we have written the unmapped start // Erase overwritten blocks, skipping the first one as we have written the unmapped start
// block there // block there
if (auto eraseStart{std::next(blockStartSuccessor)}; eraseStart != blockEndSuccessor) if (auto eraseStart{std::next(block_start_successor)}; eraseStart != block_end_successor) {
blocks.erase(eraseStart, blockEndSuccessor); blocks.erase(eraseStart, block_end_successor);
}
// Add in the unmapped block header // Add in the unmapped block header
blockStartSuccessor->virt = virt; block_start_successor->virt = virt;
blockStartSuccessor->phys = UnmappedPa; block_start_successor->phys = UnmappedPa;
} }
if (unmapCallback) if (unmap_callback)
unmapCallback(virt, size); unmap_callback(virt, size);
} }
ALLOC_MEMBER_CONST()::FlatAllocator(VaType vaStart_, VaType vaLimit_) ALLOC_MEMBER_CONST()::FlatAllocator(VaType virt_start_, VaType va_limit_)
: Base(vaLimit_), currentLinearAllocEnd(vaStart_), vaStart(vaStart_) {} : Base{va_limit_}, virt_start{virt_start_}, current_linear_alloc_end{virt_start_} {}
ALLOC_MEMBER(VaType)::Allocate(VaType size) { ALLOC_MEMBER(VaType)::Allocate(VaType size) {
std::scoped_lock lock(this->blockMutex); std::scoped_lock lock(this->block_mutex);
VaType allocStart{UnmappedVa}; VaType alloc_start{UnmappedVa};
VaType allocEnd{currentLinearAllocEnd + size}; VaType alloc_end{current_linear_alloc_end + size};
// Avoid searching backwards in the address space if possible // Avoid searching backwards in the address space if possible
if (allocEnd >= currentLinearAllocEnd && allocEnd <= this->vaLimit) { if (alloc_end >= current_linear_alloc_end && alloc_end <= this->va_limit) {
auto allocEndSuccessor{ auto alloc_end_successor{
std::lower_bound(this->blocks.begin(), this->blocks.end(), allocEnd)}; std::lower_bound(this->blocks.begin(), this->blocks.end(), alloc_end)};
if (allocEndSuccessor == this->blocks.begin()) if (alloc_end_successor == this->blocks.begin()) {
UNREACHABLE_MSG("First block in AS map is invalid!"); UNREACHABLE_MSG("First block in AS map is invalid!");
}
auto allocEndPredecessor{std::prev(allocEndSuccessor)}; auto alloc_end_predecessor{std::prev(alloc_end_successor)};
if (allocEndPredecessor->virt <= currentLinearAllocEnd) { if (alloc_end_predecessor->virt <= current_linear_alloc_end) {
allocStart = currentLinearAllocEnd; alloc_start = current_linear_alloc_end;
} else { } else {
// Skip over fixed any mappings in front of us // Skip over fixed any mappings in front of us
while (allocEndSuccessor != this->blocks.end()) { while (alloc_end_successor != this->blocks.end()) {
if (allocEndSuccessor->virt - allocEndPredecessor->virt < size || if (alloc_end_successor->virt - alloc_end_predecessor->virt < size ||
allocEndPredecessor->Mapped()) { alloc_end_predecessor->Mapped()) {
allocStart = allocEndPredecessor->virt; alloc_start = alloc_end_predecessor->virt;
break; break;
} }
allocEndPredecessor = allocEndSuccessor++; alloc_end_predecessor = alloc_end_successor++;
// Use the VA limit to calculate if we can fit in the final block since it has no // Use the VA limit to calculate if we can fit in the final block since it has no
// successor // successor
if (allocEndSuccessor == this->blocks.end()) { if (alloc_end_successor == this->blocks.end()) {
allocEnd = allocEndPredecessor->virt + size; alloc_end = alloc_end_predecessor->virt + size;
if (allocEnd >= allocEndPredecessor->virt && allocEnd <= this->vaLimit) if (alloc_end >= alloc_end_predecessor->virt && alloc_end <= this->va_limit) {
allocStart = allocEndPredecessor->virt; alloc_start = alloc_end_predecessor->virt;
}
} }
} }
} }
} }
if (allocStart != UnmappedVa) { if (alloc_start != UnmappedVa) {
currentLinearAllocEnd = allocStart + size; current_linear_alloc_end = alloc_start + size;
} else { // If linear allocation overflows the AS then find a gap } else { // If linear allocation overflows the AS then find a gap
if (this->blocks.size() <= 2) if (this->blocks.size() <= 2) {
UNREACHABLE_MSG("Unexpected allocator state!"); UNREACHABLE_MSG("Unexpected allocator state!");
auto searchPredecessor{this->blocks.begin()};
auto searchSuccessor{std::next(searchPredecessor)};
while (searchSuccessor != this->blocks.end() &&
(searchSuccessor->virt - searchPredecessor->virt < size ||
searchPredecessor->Mapped())) {
searchPredecessor = searchSuccessor++;
} }
if (searchSuccessor != this->blocks.end()) auto search_predecessor{this->blocks.begin()};
allocStart = searchPredecessor->virt; auto search_successor{std::next(search_predecessor)};
else
while (search_successor != this->blocks.end() &&
(search_successor->virt - search_predecessor->virt < size ||
search_predecessor->Mapped())) {
search_predecessor = search_successor++;
}
if (search_successor != this->blocks.end()) {
alloc_start = search_predecessor->virt;
} else {
return {}; // AS is full return {}; // AS is full
} }
}
this->MapLocked(allocStart, true, size, {}); this->MapLocked(alloc_start, true, size, {});
return allocStart; return alloc_start;
} }
ALLOC_MEMBER(void)::AllocateFixed(VaType virt, VaType size) { ALLOC_MEMBER(void)::AllocateFixed(VaType virt, VaType size) {

View file

@ -472,16 +472,16 @@ void nvhost_as_gpu::GetVARegionsImpl(IoctlGetVaRegions& params) {
params.regions = std::array<VaRegion, 2>{ params.regions = std::array<VaRegion, 2>{
VaRegion{ VaRegion{
.offset = vm.small_page_allocator->vaStart << VM::PAGE_SIZE_BITS, .offset = vm.small_page_allocator->GetVAStart() << VM::PAGE_SIZE_BITS,
.page_size = VM::PAGE_SIZE, .page_size = VM::PAGE_SIZE,
._pad0_{}, ._pad0_{},
.pages = vm.small_page_allocator->vaLimit - vm.small_page_allocator->vaStart, .pages = vm.small_page_allocator->GetVALimit() - vm.small_page_allocator->GetVAStart(),
}, },
VaRegion{ VaRegion{
.offset = vm.big_page_allocator->vaStart << vm.big_page_size_bits, .offset = vm.big_page_allocator->GetVAStart() << vm.big_page_size_bits,
.page_size = vm.big_page_size, .page_size = vm.big_page_size,
._pad0_{}, ._pad0_{},
.pages = vm.big_page_allocator->vaLimit - vm.big_page_allocator->vaStart, .pages = vm.big_page_allocator->GetVALimit() - vm.big_page_allocator->GetVAStart(),
}, },
}; };
} }

View file

@ -669,17 +669,6 @@ Device::Device(VkInstance instance_, vk::PhysicalDevice physical_, VkSurfaceKHR
const bool is_amd = const bool is_amd =
driver_id == VK_DRIVER_ID_AMD_PROPRIETARY || driver_id == VK_DRIVER_ID_AMD_OPEN_SOURCE; driver_id == VK_DRIVER_ID_AMD_PROPRIETARY || driver_id == VK_DRIVER_ID_AMD_OPEN_SOURCE;
if (is_amd) { if (is_amd) {
// TODO(lat9nq): Add an upper bound when AMD fixes their VK_KHR_push_descriptor
const bool has_broken_push_descriptor = VK_VERSION_MAJOR(properties.driverVersion) == 2 &&
VK_VERSION_MINOR(properties.driverVersion) == 0 &&
VK_VERSION_PATCH(properties.driverVersion) >= 226;
if (khr_push_descriptor && has_broken_push_descriptor) {
LOG_WARNING(
Render_Vulkan,
"Disabling AMD driver 2.0.226 and later from broken VK_KHR_push_descriptor");
khr_push_descriptor = false;
}
// AMD drivers need a higher amount of Sets per Pool in certain circunstances like in XC2. // AMD drivers need a higher amount of Sets per Pool in certain circunstances like in XC2.
sets_per_pool = 96; sets_per_pool = 96;
// Disable VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT on AMD GCN4 and lower as it is broken. // Disable VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT on AMD GCN4 and lower as it is broken.