early-access version 3942

This commit is contained in:
pineappleEA 2023-10-22 07:00:53 +02:00
parent 6ae374100b
commit 53383d21aa
40 changed files with 2013 additions and 1215 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 3941. This is the source code for early-access 3942.
## Legal Notice ## Legal Notice

View file

@ -86,9 +86,9 @@ void ARM_Interface::SymbolicateBacktrace(Core::System& system, std::vector<Backt
std::map<std::string, Symbols::Symbols> symbols; std::map<std::string, Symbols::Symbols> symbols;
for (const auto& module : modules) { for (const auto& module : modules) {
symbols.insert_or_assign( symbols.insert_or_assign(module.second,
module.second, Symbols::GetSymbols(module.first, system.ApplicationMemory(), Symbols::GetSymbols(module.first, system.ApplicationMemory(),
system.ApplicationProcess()->Is64BitProcess())); system.ApplicationProcess()->Is64Bit()));
} }
for (auto& entry : out) { for (auto& entry : out) {

View file

@ -309,16 +309,8 @@ struct System::Impl {
telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider); telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider);
// Create a resource limit for the process.
const auto physical_memory_size =
kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application);
auto* resource_limit = Kernel::CreateResourceLimitForProcess(system, physical_memory_size);
// Create the process. // Create the process.
auto main_process = Kernel::KProcess::Create(system.Kernel()); auto main_process = Kernel::KProcess::Create(system.Kernel());
ASSERT(Kernel::KProcess::Initialize(main_process, system, "main",
Kernel::KProcess::ProcessType::Userland, resource_limit)
.IsSuccess());
Kernel::KProcess::Register(system.Kernel(), main_process); Kernel::KProcess::Register(system.Kernel(), main_process);
kernel.MakeApplicationProcess(main_process); kernel.MakeApplicationProcess(main_process);
const auto [load_result, load_parameters] = app_loader->Load(*main_process, system); const auto [load_result, load_parameters] = app_loader->Load(*main_process, system);
@ -418,6 +410,7 @@ struct System::Impl {
services->KillNVNFlinger(); services->KillNVNFlinger();
} }
kernel.CloseServices(); kernel.CloseServices();
kernel.ShutdownCores();
services.reset(); services.reset();
service_manager.reset(); service_manager.reset();
cheat_engine.reset(); cheat_engine.reset();
@ -429,7 +422,6 @@ struct System::Impl {
gpu_core.reset(); gpu_core.reset();
host1x_core.reset(); host1x_core.reset();
perf_stats.reset(); perf_stats.reset();
kernel.ShutdownCores();
cpu_manager.Shutdown(); cpu_manager.Shutdown();
debugger.reset(); debugger.reset();
kernel.Shutdown(); kernel.Shutdown();

View file

@ -258,20 +258,20 @@ private:
Kernel::KScopedSchedulerLock sl{system.Kernel()}; Kernel::KScopedSchedulerLock sl{system.Kernel()};
// Put all threads to sleep on next scheduler round. // Put all threads to sleep on next scheduler round.
for (auto* thread : ThreadList()) { for (auto& thread : ThreadList()) {
thread->RequestSuspend(Kernel::SuspendType::Debug); thread.RequestSuspend(Kernel::SuspendType::Debug);
} }
} }
void ResumeEmulation(Kernel::KThread* except = nullptr) { void ResumeEmulation(Kernel::KThread* except = nullptr) {
// Wake up all threads. // Wake up all threads.
for (auto* thread : ThreadList()) { for (auto& thread : ThreadList()) {
if (thread == except) { if (std::addressof(thread) == except) {
continue; continue;
} }
thread->SetStepState(Kernel::StepState::NotStepping); thread.SetStepState(Kernel::StepState::NotStepping);
thread->Resume(Kernel::SuspendType::Debug); thread.Resume(Kernel::SuspendType::Debug);
} }
} }
@ -283,13 +283,17 @@ private:
} }
void UpdateActiveThread() { void UpdateActiveThread() {
const auto& threads{ThreadList()}; auto& threads{ThreadList()};
if (std::find(threads.begin(), threads.end(), state->active_thread) == threads.end()) { for (auto& thread : threads) {
state->active_thread = threads.front(); if (std::addressof(thread) == state->active_thread) {
// Thread is still alive, no need to update.
return;
}
} }
state->active_thread = std::addressof(threads.front());
} }
const std::list<Kernel::KThread*>& ThreadList() { Kernel::KProcess::ThreadList& ThreadList() {
return system.ApplicationProcess()->GetThreadList(); return system.ApplicationProcess()->GetThreadList();
} }

View file

@ -109,7 +109,7 @@ static std::string EscapeXML(std::string_view data) {
GDBStub::GDBStub(DebuggerBackend& backend_, Core::System& system_) GDBStub::GDBStub(DebuggerBackend& backend_, Core::System& system_)
: DebuggerFrontend(backend_), system{system_} { : DebuggerFrontend(backend_), system{system_} {
if (system.ApplicationProcess()->Is64BitProcess()) { if (system.ApplicationProcess()->Is64Bit()) {
arch = std::make_unique<GDBStubA64>(); arch = std::make_unique<GDBStubA64>();
} else { } else {
arch = std::make_unique<GDBStubA32>(); arch = std::make_unique<GDBStubA32>();
@ -446,10 +446,10 @@ void GDBStub::HandleBreakpointRemove(std::string_view command) {
// See osdbg_thread_local_region.os.horizon.hpp and osdbg_thread_type.os.horizon.hpp // See osdbg_thread_local_region.os.horizon.hpp and osdbg_thread_type.os.horizon.hpp
static std::optional<std::string> GetNameFromThreadType32(Core::Memory::Memory& memory, static std::optional<std::string> GetNameFromThreadType32(Core::Memory::Memory& memory,
const Kernel::KThread* thread) { const Kernel::KThread& thread) {
// Read thread type from TLS // Read thread type from TLS
const VAddr tls_thread_type{memory.Read32(thread->GetTlsAddress() + 0x1fc)}; const VAddr tls_thread_type{memory.Read32(thread.GetTlsAddress() + 0x1fc)};
const VAddr argument_thread_type{thread->GetArgument()}; const VAddr argument_thread_type{thread.GetArgument()};
if (argument_thread_type && tls_thread_type != argument_thread_type) { if (argument_thread_type && tls_thread_type != argument_thread_type) {
// Probably not created by nnsdk, no name available. // Probably not created by nnsdk, no name available.
@ -477,10 +477,10 @@ static std::optional<std::string> GetNameFromThreadType32(Core::Memory::Memory&
} }
static std::optional<std::string> GetNameFromThreadType64(Core::Memory::Memory& memory, static std::optional<std::string> GetNameFromThreadType64(Core::Memory::Memory& memory,
const Kernel::KThread* thread) { const Kernel::KThread& thread) {
// Read thread type from TLS // Read thread type from TLS
const VAddr tls_thread_type{memory.Read64(thread->GetTlsAddress() + 0x1f8)}; const VAddr tls_thread_type{memory.Read64(thread.GetTlsAddress() + 0x1f8)};
const VAddr argument_thread_type{thread->GetArgument()}; const VAddr argument_thread_type{thread.GetArgument()};
if (argument_thread_type && tls_thread_type != argument_thread_type) { if (argument_thread_type && tls_thread_type != argument_thread_type) {
// Probably not created by nnsdk, no name available. // Probably not created by nnsdk, no name available.
@ -508,16 +508,16 @@ static std::optional<std::string> GetNameFromThreadType64(Core::Memory::Memory&
} }
static std::optional<std::string> GetThreadName(Core::System& system, static std::optional<std::string> GetThreadName(Core::System& system,
const Kernel::KThread* thread) { const Kernel::KThread& thread) {
if (system.ApplicationProcess()->Is64BitProcess()) { if (system.ApplicationProcess()->Is64Bit()) {
return GetNameFromThreadType64(system.ApplicationMemory(), thread); return GetNameFromThreadType64(system.ApplicationMemory(), thread);
} else { } else {
return GetNameFromThreadType32(system.ApplicationMemory(), thread); return GetNameFromThreadType32(system.ApplicationMemory(), thread);
} }
} }
static std::string_view GetThreadWaitReason(const Kernel::KThread* thread) { static std::string_view GetThreadWaitReason(const Kernel::KThread& thread) {
switch (thread->GetWaitReasonForDebugging()) { switch (thread.GetWaitReasonForDebugging()) {
case Kernel::ThreadWaitReasonForDebugging::Sleep: case Kernel::ThreadWaitReasonForDebugging::Sleep:
return "Sleep"; return "Sleep";
case Kernel::ThreadWaitReasonForDebugging::IPC: case Kernel::ThreadWaitReasonForDebugging::IPC:
@ -535,8 +535,8 @@ static std::string_view GetThreadWaitReason(const Kernel::KThread* thread) {
} }
} }
static std::string GetThreadState(const Kernel::KThread* thread) { static std::string GetThreadState(const Kernel::KThread& thread) {
switch (thread->GetState()) { switch (thread.GetState()) {
case Kernel::ThreadState::Initialized: case Kernel::ThreadState::Initialized:
return "Initialized"; return "Initialized";
case Kernel::ThreadState::Waiting: case Kernel::ThreadState::Waiting:
@ -604,7 +604,7 @@ void GDBStub::HandleQuery(std::string_view command) {
const auto& threads = system.ApplicationProcess()->GetThreadList(); const auto& threads = system.ApplicationProcess()->GetThreadList();
std::vector<std::string> thread_ids; std::vector<std::string> thread_ids;
for (const auto& thread : threads) { for (const auto& thread : threads) {
thread_ids.push_back(fmt::format("{:x}", thread->GetThreadId())); thread_ids.push_back(fmt::format("{:x}", thread.GetThreadId()));
} }
SendReply(fmt::format("m{}", fmt::join(thread_ids, ","))); SendReply(fmt::format("m{}", fmt::join(thread_ids, ",")));
} else if (command.starts_with("sThreadInfo")) { } else if (command.starts_with("sThreadInfo")) {
@ -616,14 +616,14 @@ void GDBStub::HandleQuery(std::string_view command) {
buffer += "<threads>"; buffer += "<threads>";
const auto& threads = system.ApplicationProcess()->GetThreadList(); const auto& threads = system.ApplicationProcess()->GetThreadList();
for (const auto* thread : threads) { for (const auto& thread : threads) {
auto thread_name{GetThreadName(system, thread)}; auto thread_name{GetThreadName(system, thread)};
if (!thread_name) { if (!thread_name) {
thread_name = fmt::format("Thread {:d}", thread->GetThreadId()); thread_name = fmt::format("Thread {:d}", thread.GetThreadId());
} }
buffer += fmt::format(R"(<thread id="{:x}" core="{:d}" name="{}">{}</thread>)", buffer += fmt::format(R"(<thread id="{:x}" core="{:d}" name="{}">{}</thread>)",
thread->GetThreadId(), thread->GetActiveCore(), thread.GetThreadId(), thread.GetActiveCore(),
EscapeXML(*thread_name), GetThreadState(thread)); EscapeXML(*thread_name), GetThreadState(thread));
} }
@ -850,10 +850,10 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
} }
Kernel::KThread* GDBStub::GetThreadByID(u64 thread_id) { Kernel::KThread* GDBStub::GetThreadByID(u64 thread_id) {
const auto& threads{system.ApplicationProcess()->GetThreadList()}; auto& threads{system.ApplicationProcess()->GetThreadList()};
for (auto* thread : threads) { for (auto& thread : threads) {
if (thread->GetThreadId() == thread_id) { if (thread.GetThreadId() == thread_id) {
return thread; return std::addressof(thread);
} }
} }

View file

@ -104,16 +104,16 @@ Loader::ResultStatus ProgramMetadata::Reload(VirtualFile file) {
} }
/*static*/ ProgramMetadata ProgramMetadata::GetDefault() { /*static*/ ProgramMetadata ProgramMetadata::GetDefault() {
// Allow use of cores 0~3 and thread priorities 1~63. // Allow use of cores 0~3 and thread priorities 16~63.
constexpr u32 default_thread_info_capability = 0x30007F7; constexpr u32 default_thread_info_capability = 0x30043F7;
ProgramMetadata result; ProgramMetadata result;
result.LoadManual( result.LoadManual(
true /*is_64_bit*/, FileSys::ProgramAddressSpaceType::Is39Bit /*address_space*/, true /*is_64_bit*/, FileSys::ProgramAddressSpaceType::Is39Bit /*address_space*/,
0x2c /*main_thread_prio*/, 0 /*main_thread_core*/, 0x00100000 /*main_thread_stack_size*/, 0x2c /*main_thread_prio*/, 0 /*main_thread_core*/, 0x100000 /*main_thread_stack_size*/,
0 /*title_id*/, 0xFFFFFFFFFFFFFFFF /*filesystem_permissions*/, 0 /*title_id*/, 0xFFFFFFFFFFFFFFFF /*filesystem_permissions*/, 0 /*system_resource_size*/,
0x1FE00000 /*system_resource_size*/, {default_thread_info_capability} /*capabilities*/); {default_thread_info_capability} /*capabilities*/);
return result; return result;
} }

View file

@ -73,6 +73,9 @@ public:
u64 GetFilesystemPermissions() const; u64 GetFilesystemPermissions() const;
u32 GetSystemResourceSize() const; u32 GetSystemResourceSize() const;
const KernelCapabilityDescriptors& GetKernelCapabilities() const; const KernelCapabilityDescriptors& GetKernelCapabilities() const;
const std::array<u8, 0x10>& GetName() const {
return npdm_header.application_name;
}
void Print() const; void Print() const;
@ -164,14 +167,14 @@ private:
u32_le unk_size_2; u32_le unk_size_2;
}; };
Header npdm_header; Header npdm_header{};
AciHeader aci_header; AciHeader aci_header{};
AcidHeader acid_header; AcidHeader acid_header{};
FileAccessControl acid_file_access; FileAccessControl acid_file_access{};
FileAccessHeader aci_file_access; FileAccessHeader aci_file_access{};
KernelCapabilityDescriptors aci_kernel_capabilities; KernelCapabilityDescriptors aci_kernel_capabilities{};
}; };
} // namespace FileSys } // namespace FileSys

View file

@ -8,7 +8,11 @@
#include "core/hle/kernel/board/nintendo/nx/k_system_control.h" #include "core/hle/kernel/board/nintendo/nx/k_system_control.h"
#include "core/hle/kernel/board/nintendo/nx/secure_monitor.h" #include "core/hle/kernel/board/nintendo/nx/secure_monitor.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_trace.h" #include "core/hle/kernel/k_trace.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
namespace Kernel::Board::Nintendo::Nx { namespace Kernel::Board::Nintendo::Nx {
@ -30,6 +34,8 @@ constexpr const std::size_t RequiredNonSecureSystemMemorySize =
constexpr const std::size_t RequiredNonSecureSystemMemorySizeWithFatal = constexpr const std::size_t RequiredNonSecureSystemMemorySizeWithFatal =
RequiredNonSecureSystemMemorySize + impl::RequiredNonSecureSystemMemorySizeViFatal; RequiredNonSecureSystemMemorySize + impl::RequiredNonSecureSystemMemorySizeViFatal;
constexpr const std::size_t SecureAlignment = 128_KiB;
namespace { namespace {
using namespace Common::Literals; using namespace Common::Literals;
@ -183,4 +189,57 @@ u64 KSystemControl::GenerateRandomRange(u64 min, u64 max) {
return GenerateUniformRange(min, max, GenerateRandomU64); return GenerateUniformRange(min, max, GenerateRandomU64);
} }
size_t KSystemControl::CalculateRequiredSecureMemorySize(size_t size, u32 pool) {
if (pool == static_cast<u32>(KMemoryManager::Pool::Applet)) {
return 0;
} else {
// return KSystemControlBase::CalculateRequiredSecureMemorySize(size, pool);
return size;
}
}
Result KSystemControl::AllocateSecureMemory(KernelCore& kernel, KVirtualAddress* out, size_t size,
u32 pool) {
// Applet secure memory is handled separately.
UNIMPLEMENTED_IF(pool == static_cast<u32>(KMemoryManager::Pool::Applet));
// Ensure the size is aligned.
const size_t alignment =
(pool == static_cast<u32>(KMemoryManager::Pool::System) ? PageSize : SecureAlignment);
R_UNLESS(Common::IsAligned(size, alignment), ResultInvalidSize);
// Allocate the memory.
const size_t num_pages = size / PageSize;
const KPhysicalAddress paddr = kernel.MemoryManager().AllocateAndOpenContinuous(
num_pages, alignment / PageSize,
KMemoryManager::EncodeOption(static_cast<KMemoryManager::Pool>(pool),
KMemoryManager::Direction::FromFront));
R_UNLESS(paddr != 0, ResultOutOfMemory);
// Ensure we don't leak references to the memory on error.
ON_RESULT_FAILURE {
kernel.MemoryManager().Close(paddr, num_pages);
};
// We succeeded.
*out = KPageTable::GetHeapVirtualAddress(kernel.MemoryLayout(), paddr);
R_SUCCEED();
}
void KSystemControl::FreeSecureMemory(KernelCore& kernel, KVirtualAddress address, size_t size,
u32 pool) {
// Applet secure memory is handled separately.
UNIMPLEMENTED_IF(pool == static_cast<u32>(KMemoryManager::Pool::Applet));
// Ensure the size is aligned.
const size_t alignment =
(pool == static_cast<u32>(KMemoryManager::Pool::System) ? PageSize : SecureAlignment);
ASSERT(Common::IsAligned(GetInteger(address), alignment));
ASSERT(Common::IsAligned(size, alignment));
// Close the secure region's pages.
kernel.MemoryManager().Close(KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), address),
size / PageSize);
}
} // namespace Kernel::Board::Nintendo::Nx } // namespace Kernel::Board::Nintendo::Nx

View file

@ -4,6 +4,11 @@
#pragma once #pragma once
#include "core/hle/kernel/k_typed_address.h" #include "core/hle/kernel/k_typed_address.h"
#include "core/hle/result.h"
namespace Kernel {
class KernelCore;
}
namespace Kernel::Board::Nintendo::Nx { namespace Kernel::Board::Nintendo::Nx {
@ -25,8 +30,16 @@ public:
static std::size_t GetMinimumNonSecureSystemPoolSize(); static std::size_t GetMinimumNonSecureSystemPoolSize();
}; };
// Randomness.
static u64 GenerateRandomRange(u64 min, u64 max); static u64 GenerateRandomRange(u64 min, u64 max);
static u64 GenerateRandomU64(); static u64 GenerateRandomU64();
// Secure Memory.
static size_t CalculateRequiredSecureMemorySize(size_t size, u32 pool);
static Result AllocateSecureMemory(KernelCore& kernel, KVirtualAddress* out, size_t size,
u32 pool);
static void FreeSecureMemory(KernelCore& kernel, KVirtualAddress address, size_t size,
u32 pool);
}; };
} // namespace Kernel::Board::Nintendo::Nx } // namespace Kernel::Board::Nintendo::Nx

View file

@ -200,8 +200,8 @@ private:
RawCapabilityValue raw; RawCapabilityValue raw;
BitField<0, 15, CapabilityType> id; BitField<0, 15, CapabilityType> id;
BitField<15, 4, u32> major_version; BitField<15, 4, u32> minor_version;
BitField<19, 13, u32> minor_version; BitField<19, 13, u32> major_version;
}; };
union HandleTable { union HandleTable {

View file

@ -107,12 +107,12 @@ KConditionVariable::KConditionVariable(Core::System& system)
KConditionVariable::~KConditionVariable() = default; KConditionVariable::~KConditionVariable() = default;
Result KConditionVariable::SignalToAddress(KProcessAddress addr) { Result KConditionVariable::SignalToAddress(KernelCore& kernel, KProcessAddress addr) {
KThread* owner_thread = GetCurrentThreadPointer(m_kernel); KThread* owner_thread = GetCurrentThreadPointer(kernel);
// Signal the address. // Signal the address.
{ {
KScopedSchedulerLock sl(m_kernel); KScopedSchedulerLock sl(kernel);
// Remove waiter thread. // Remove waiter thread.
bool has_waiters{}; bool has_waiters{};
@ -133,7 +133,7 @@ Result KConditionVariable::SignalToAddress(KProcessAddress addr) {
// Write the value to userspace. // Write the value to userspace.
Result result{ResultSuccess}; Result result{ResultSuccess};
if (WriteToUser(m_kernel, addr, std::addressof(next_value))) [[likely]] { if (WriteToUser(kernel, addr, std::addressof(next_value))) [[likely]] {
result = ResultSuccess; result = ResultSuccess;
} else { } else {
result = ResultInvalidCurrentMemory; result = ResultInvalidCurrentMemory;
@ -148,28 +148,28 @@ Result KConditionVariable::SignalToAddress(KProcessAddress addr) {
} }
} }
Result KConditionVariable::WaitForAddress(Handle handle, KProcessAddress addr, u32 value) { Result KConditionVariable::WaitForAddress(KernelCore& kernel, Handle handle, KProcessAddress addr,
KThread* cur_thread = GetCurrentThreadPointer(m_kernel); u32 value) {
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(m_kernel); KThread* cur_thread = GetCurrentThreadPointer(kernel);
ThreadQueueImplForKConditionVariableWaitForAddress wait_queue(kernel);
// Wait for the address. // Wait for the address.
KThread* owner_thread{}; KThread* owner_thread{};
{ {
KScopedSchedulerLock sl(m_kernel); KScopedSchedulerLock sl(kernel);
// Check if the thread should terminate. // Check if the thread should terminate.
R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested); R_UNLESS(!cur_thread->IsTerminationRequested(), ResultTerminationRequested);
// Read the tag from userspace. // Read the tag from userspace.
u32 test_tag{}; u32 test_tag{};
R_UNLESS(ReadFromUser(m_kernel, std::addressof(test_tag), addr), R_UNLESS(ReadFromUser(kernel, std::addressof(test_tag), addr), ResultInvalidCurrentMemory);
ResultInvalidCurrentMemory);
// If the tag isn't the handle (with wait mask), we're done. // If the tag isn't the handle (with wait mask), we're done.
R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask)); R_SUCCEED_IF(test_tag != (handle | Svc::HandleWaitMask));
// Get the lock owner thread. // Get the lock owner thread.
owner_thread = GetCurrentProcess(m_kernel) owner_thread = GetCurrentProcess(kernel)
.GetHandleTable() .GetHandleTable()
.GetObjectWithoutPseudoHandle<KThread>(handle) .GetObjectWithoutPseudoHandle<KThread>(handle)
.ReleasePointerUnsafe(); .ReleasePointerUnsafe();

View file

@ -24,11 +24,12 @@ public:
explicit KConditionVariable(Core::System& system); explicit KConditionVariable(Core::System& system);
~KConditionVariable(); ~KConditionVariable();
// Arbitration // Arbitration.
Result SignalToAddress(KProcessAddress addr); static Result SignalToAddress(KernelCore& kernel, KProcessAddress addr);
Result WaitForAddress(Handle handle, KProcessAddress addr, u32 value); static Result WaitForAddress(KernelCore& kernel, Handle handle, KProcessAddress addr,
u32 value);
// Condition variable // Condition variable.
void Signal(u64 cv_key, s32 count); void Signal(u64 cv_key, s32 count);
Result Wait(KProcessAddress addr, u64 key, u32 value, s64 timeout); Result Wait(KProcessAddress addr, u64 key, u32 value, s64 timeout);

View file

@ -22,7 +22,7 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
KScopedSchedulerLock sl{kernel}; KScopedSchedulerLock sl{kernel};
// Pin the current thread. // Pin the current thread.
process->PinCurrentThread(core_id); process->PinCurrentThread();
// Set the interrupt flag for the thread. // Set the interrupt flag for the thread.
GetCurrentThread(kernel).SetInterruptFlag(); GetCurrentThread(kernel).SetInterruptFlag();

View file

@ -11,6 +11,7 @@
#include "core/hle/kernel/initial_process.h" #include "core/hle/kernel/initial_process.h"
#include "core/hle/kernel/k_memory_manager.h" #include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_page_group.h" #include "core/hle/kernel/k_page_group.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h" #include "core/hle/kernel/svc_results.h"
@ -168,11 +169,37 @@ void KMemoryManager::Initialize(KVirtualAddress management_region, size_t manage
} }
Result KMemoryManager::InitializeOptimizedMemory(u64 process_id, Pool pool) { Result KMemoryManager::InitializeOptimizedMemory(u64 process_id, Pool pool) {
UNREACHABLE(); const u32 pool_index = static_cast<u32>(pool);
// Lock the pool.
KScopedLightLock lk(m_pool_locks[pool_index]);
// Check that we don't already have an optimized process.
R_UNLESS(!m_has_optimized_process[pool_index], ResultBusy);
// Set the optimized process id.
m_optimized_process_ids[pool_index] = process_id;
m_has_optimized_process[pool_index] = true;
// Clear the management area for the optimized process.
for (auto* manager = this->GetFirstManager(pool, Direction::FromFront); manager != nullptr;
manager = this->GetNextManager(manager, Direction::FromFront)) {
manager->InitializeOptimizedMemory(m_system.Kernel());
}
R_SUCCEED();
} }
void KMemoryManager::FinalizeOptimizedMemory(u64 process_id, Pool pool) { void KMemoryManager::FinalizeOptimizedMemory(u64 process_id, Pool pool) {
UNREACHABLE(); const u32 pool_index = static_cast<u32>(pool);
// Lock the pool.
KScopedLightLock lk(m_pool_locks[pool_index]);
// If the process was optimized, clear it.
if (m_has_optimized_process[pool_index] && m_optimized_process_ids[pool_index] == process_id) {
m_has_optimized_process[pool_index] = false;
}
} }
KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages,
@ -207,7 +234,7 @@ KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, siz
// Maintain the optimized memory bitmap, if we should. // Maintain the optimized memory bitmap, if we should.
if (m_has_optimized_process[static_cast<size_t>(pool)]) { if (m_has_optimized_process[static_cast<size_t>(pool)]) {
UNIMPLEMENTED(); chosen_manager->TrackUnoptimizedAllocation(m_system.Kernel(), allocated_block, num_pages);
} }
// Open the first reference to the pages. // Open the first reference to the pages.
@ -255,7 +282,8 @@ Result KMemoryManager::AllocatePageGroupImpl(KPageGroup* out, size_t num_pages,
// Maintain the optimized memory bitmap, if we should. // Maintain the optimized memory bitmap, if we should.
if (unoptimized) { if (unoptimized) {
UNIMPLEMENTED(); cur_manager->TrackUnoptimizedAllocation(m_system.Kernel(), allocated_block,
pages_per_alloc);
} }
num_pages -= pages_per_alloc; num_pages -= pages_per_alloc;
@ -358,8 +386,8 @@ Result KMemoryManager::AllocateForProcess(KPageGroup* out, size_t num_pages, u32
// Process part or all of the block. // Process part or all of the block.
const size_t cur_pages = const size_t cur_pages =
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address)); std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
any_new = any_new = manager.ProcessOptimizedAllocation(m_system.Kernel(), cur_address,
manager.ProcessOptimizedAllocation(cur_address, cur_pages, fill_pattern); cur_pages, fill_pattern);
// Advance. // Advance.
cur_address += cur_pages * PageSize; cur_address += cur_pages * PageSize;
@ -382,7 +410,7 @@ Result KMemoryManager::AllocateForProcess(KPageGroup* out, size_t num_pages, u32
// Track some or all of the current pages. // Track some or all of the current pages.
const size_t cur_pages = const size_t cur_pages =
std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address)); std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
manager.TrackOptimizedAllocation(cur_address, cur_pages); manager.TrackOptimizedAllocation(m_system.Kernel(), cur_address, cur_pages);
// Advance. // Advance.
cur_address += cur_pages * PageSize; cur_address += cur_pages * PageSize;
@ -427,17 +455,86 @@ size_t KMemoryManager::Impl::Initialize(KPhysicalAddress address, size_t size,
return total_management_size; return total_management_size;
} }
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KPhysicalAddress block, size_t num_pages) { void KMemoryManager::Impl::InitializeOptimizedMemory(KernelCore& kernel) {
UNREACHABLE(); auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
std::memset(optimize_map, 0, CalculateOptimizedProcessOverheadSize(m_heap.GetSize()));
} }
void KMemoryManager::Impl::TrackOptimizedAllocation(KPhysicalAddress block, size_t num_pages) { void KMemoryManager::Impl::TrackUnoptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
UNREACHABLE(); size_t num_pages) {
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
// Get the range we're tracking.
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
// Track.
while (offset <= last) {
// Mark the page as not being optimized-allocated.
optimize_map[offset / Common::BitSize<u64>()] &=
~(u64(1) << (offset % Common::BitSize<u64>()));
offset++;
}
} }
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KPhysicalAddress block, size_t num_pages, void KMemoryManager::Impl::TrackOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
u8 fill_pattern) { size_t num_pages) {
UNREACHABLE(); auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
// Get the range we're tracking.
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
// Track.
while (offset <= last) {
// Mark the page as being optimized-allocated.
optimize_map[offset / Common::BitSize<u64>()] |=
(u64(1) << (offset % Common::BitSize<u64>()));
offset++;
}
}
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
size_t num_pages, u8 fill_pattern) {
auto& device_memory = kernel.System().DeviceMemory();
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto* optimize_map = device_memory.GetPointer<u64>(optimize_pa);
// We want to return whether any pages were newly allocated.
bool any_new = false;
// Get the range we're processing.
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
// Process.
while (offset <= last) {
// Check if the page has been optimized-allocated before.
if ((optimize_map[offset / Common::BitSize<u64>()] &
(u64(1) << (offset % Common::BitSize<u64>()))) == 0) {
// If not, it's new.
any_new = true;
// Fill the page.
auto* ptr = device_memory.GetPointer<u8>(m_heap.GetAddress());
std::memset(ptr + offset * PageSize, fill_pattern, PageSize);
}
offset++;
}
// Return the number of pages we processed.
return any_new;
} }
size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) { size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {

View file

@ -216,14 +216,14 @@ private:
m_heap.SetInitialUsedSize(reserved_size); m_heap.SetInitialUsedSize(reserved_size);
} }
void InitializeOptimizedMemory() { void InitializeOptimizedMemory(KernelCore& kernel);
UNIMPLEMENTED();
}
void TrackUnoptimizedAllocation(KPhysicalAddress block, size_t num_pages); void TrackUnoptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
void TrackOptimizedAllocation(KPhysicalAddress block, size_t num_pages); size_t num_pages);
void TrackOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block, size_t num_pages);
bool ProcessOptimizedAllocation(KPhysicalAddress block, size_t num_pages, u8 fill_pattern); bool ProcessOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
size_t num_pages, u8 fill_pattern);
constexpr Pool GetPool() const { constexpr Pool GetPool() const {
return m_pool; return m_pool;

View file

@ -82,14 +82,14 @@ public:
using namespace Common::Literals; using namespace Common::Literals;
constexpr size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceType as_type) { constexpr size_t GetAddressSpaceWidthFromType(Svc::CreateProcessFlag as_type) {
switch (as_type) { switch (as_type) {
case FileSys::ProgramAddressSpaceType::Is32Bit: case Svc::CreateProcessFlag::AddressSpace32Bit:
case FileSys::ProgramAddressSpaceType::Is32BitNoMap: case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
return 32; return 32;
case FileSys::ProgramAddressSpaceType::Is36Bit: case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
return 36; return 36;
case FileSys::ProgramAddressSpaceType::Is39Bit: case Svc::CreateProcessFlag::AddressSpace64Bit:
return 39; return 39;
default: default:
ASSERT(false); ASSERT(false);
@ -105,7 +105,7 @@ KPageTable::KPageTable(Core::System& system_)
KPageTable::~KPageTable() = default; KPageTable::~KPageTable() = default;
Result KPageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr, Result KPageTable::InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
bool enable_das_merge, bool from_back, bool enable_das_merge, bool from_back,
KMemoryManager::Pool pool, KProcessAddress code_addr, KMemoryManager::Pool pool, KProcessAddress code_addr,
size_t code_size, KSystemResource* system_resource, size_t code_size, KSystemResource* system_resource,
@ -133,7 +133,7 @@ Result KPageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type
ASSERT(code_addr + code_size - 1 <= end - 1); ASSERT(code_addr + code_size - 1 <= end - 1);
// Adjust heap/alias size if we don't have an alias region // Adjust heap/alias size if we don't have an alias region
if (as_type == FileSys::ProgramAddressSpaceType::Is32BitNoMap) { if (as_type == Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias) {
heap_region_size += alias_region_size; heap_region_size += alias_region_size;
alias_region_size = 0; alias_region_size = 0;
} }

View file

@ -63,7 +63,7 @@ public:
explicit KPageTable(Core::System& system_); explicit KPageTable(Core::System& system_);
~KPageTable(); ~KPageTable();
Result InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr, Result InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
bool enable_das_merge, bool from_back, KMemoryManager::Pool pool, bool enable_das_merge, bool from_back, KMemoryManager::Pool pool,
KProcessAddress code_addr, size_t code_size, KProcessAddress code_addr, size_t code_size,
KSystemResource* system_resource, KResourceLimit* resource_limit, KSystemResource* system_resource, KResourceLimit* resource_limit,
@ -400,7 +400,7 @@ public:
constexpr size_t GetAliasCodeRegionSize() const { constexpr size_t GetAliasCodeRegionSize() const {
return m_alias_code_region_end - m_alias_code_region_start; return m_alias_code_region_end - m_alias_code_region_start;
} }
size_t GetNormalMemorySize() { size_t GetNormalMemorySize() const {
KScopedLightLock lk(m_general_lock); KScopedLightLock lk(m_general_lock);
return GetHeapSize() + m_mapped_physical_memory_size; return GetHeapSize() + m_mapped_physical_memory_size;
} }

File diff suppressed because it is too large Load diff

View file

@ -1,59 +1,23 @@
// SPDX-FileCopyrightText: 2015 Citra Emulator Project // SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#pragma once #pragma once
#include <array>
#include <cstddef>
#include <list>
#include <map> #include <map>
#include <string>
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_address_arbiter.h" #include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_auto_object.h" #include "core/hle/kernel/k_capabilities.h"
#include "core/hle/kernel/k_condition_variable.h" #include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_handle_table.h" #include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_synchronization_object.h" #include "core/hle/kernel/k_page_table_manager.h"
#include "core/hle/kernel/k_system_resource.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_local_page.h" #include "core/hle/kernel/k_thread_local_page.h"
#include "core/hle/kernel/k_typed_address.h"
#include "core/hle/kernel/k_worker_task.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/result.h"
namespace Core {
namespace Memory {
class Memory;
};
class System;
} // namespace Core
namespace FileSys {
class ProgramMetadata;
}
namespace Kernel { namespace Kernel {
class KernelCore;
class KResourceLimit;
class KThread;
class KSharedMemoryInfo;
class TLSPage;
struct CodeSet;
enum class MemoryRegion : u16 {
APPLICATION = 1,
SYSTEM = 2,
BASE = 3,
};
enum class ProcessActivity : u32 {
Runnable,
Paused,
};
enum class DebugWatchpointType : u8 { enum class DebugWatchpointType : u8 {
None = 0, None = 0,
Read = 1 << 0, Read = 1 << 0,
@ -72,9 +36,6 @@ class KProcess final : public KAutoObjectWithSlabHeapAndContainer<KProcess, KWor
KERNEL_AUTOOBJECT_TRAITS(KProcess, KSynchronizationObject); KERNEL_AUTOOBJECT_TRAITS(KProcess, KSynchronizationObject);
public: public:
explicit KProcess(KernelCore& kernel);
~KProcess() override;
enum class State { enum class State {
Created = static_cast<u32>(Svc::ProcessState::Created), Created = static_cast<u32>(Svc::ProcessState::Created),
CreatedAttached = static_cast<u32>(Svc::ProcessState::CreatedAttached), CreatedAttached = static_cast<u32>(Svc::ProcessState::CreatedAttached),
@ -86,337 +47,83 @@ public:
DebugBreak = static_cast<u32>(Svc::ProcessState::DebugBreak), DebugBreak = static_cast<u32>(Svc::ProcessState::DebugBreak),
}; };
enum : u64 { using ThreadList = Common::IntrusiveListMemberTraits<&KThread::m_process_list_node>::ListType;
/// Lowest allowed process ID for a kernel initial process.
InitialKIPIDMin = 1,
/// Highest allowed process ID for a kernel initial process.
InitialKIPIDMax = 80,
/// Lowest allowed process ID for a userland process. static constexpr size_t AslrAlignment = 2_MiB;
ProcessIDMin = 81,
/// Highest allowed process ID for a userland process.
ProcessIDMax = 0xFFFFFFFFFFFFFFFF,
};
// Used to determine how process IDs are assigned. public:
enum class ProcessType { static constexpr u64 InitialProcessIdMin = 1;
KernelInternal, static constexpr u64 InitialProcessIdMax = 0x50;
Userland,
};
static constexpr std::size_t RANDOM_ENTROPY_SIZE = 4; static constexpr u64 ProcessIdMin = InitialProcessIdMax + 1;
static constexpr u64 ProcessIdMax = std::numeric_limits<u64>::max();
static Result Initialize(KProcess* process, Core::System& system, std::string process_name,
ProcessType type, KResourceLimit* res_limit);
/// Gets a reference to the process' page table.
KPageTable& GetPageTable() {
return m_page_table;
}
/// Gets const a reference to the process' page table.
const KPageTable& GetPageTable() const {
return m_page_table;
}
/// Gets a reference to the process' handle table.
KHandleTable& GetHandleTable() {
return m_handle_table;
}
/// Gets a const reference to the process' handle table.
const KHandleTable& GetHandleTable() const {
return m_handle_table;
}
/// Gets a reference to process's memory.
Core::Memory::Memory& GetMemory() const;
Result SignalToAddress(KProcessAddress address) {
return m_condition_var.SignalToAddress(address);
}
Result WaitForAddress(Handle handle, KProcessAddress address, u32 tag) {
return m_condition_var.WaitForAddress(handle, address, tag);
}
void SignalConditionVariable(u64 cv_key, int32_t count) {
return m_condition_var.Signal(cv_key, count);
}
Result WaitConditionVariable(KProcessAddress address, u64 cv_key, u32 tag, s64 ns) {
R_RETURN(m_condition_var.Wait(address, cv_key, tag, ns));
}
Result SignalAddressArbiter(uint64_t address, Svc::SignalType signal_type, s32 value,
s32 count) {
R_RETURN(m_address_arbiter.SignalToAddress(address, signal_type, value, count));
}
Result WaitAddressArbiter(uint64_t address, Svc::ArbitrationType arb_type, s32 value,
s64 timeout) {
R_RETURN(m_address_arbiter.WaitForAddress(address, arb_type, value, timeout));
}
KProcessAddress GetProcessLocalRegionAddress() const {
return m_plr_address;
}
/// Gets the current status of the process
State GetState() const {
return m_state;
}
/// Gets the unique ID that identifies this particular process.
u64 GetProcessId() const {
return m_process_id;
}
/// Gets the program ID corresponding to this process.
u64 GetProgramId() const {
return m_program_id;
}
KProcessAddress GetEntryPoint() const {
return m_code_address;
}
/// Gets the resource limit descriptor for this process
KResourceLimit* GetResourceLimit() const;
/// Gets the ideal CPU core ID for this process
u8 GetIdealCoreId() const {
return m_ideal_core;
}
/// Checks if the specified thread priority is valid.
bool CheckThreadPriority(s32 prio) const {
return ((1ULL << prio) & GetPriorityMask()) != 0;
}
/// Gets the bitmask of allowed cores that this process' threads can run on.
u64 GetCoreMask() const {
return m_capabilities.GetCoreMask();
}
/// Gets the bitmask of allowed thread priorities.
u64 GetPriorityMask() const {
return m_capabilities.GetPriorityMask();
}
/// Gets the amount of secure memory to allocate for memory management.
u32 GetSystemResourceSize() const {
return m_system_resource_size;
}
/// Gets the amount of secure memory currently in use for memory management.
u32 GetSystemResourceUsage() const {
// On hardware, this returns the amount of system resource memory that has
// been used by the kernel. This is problematic for Yuzu to emulate, because
// system resource memory is used for page tables -- and yuzu doesn't really
// have a way to calculate how much memory is required for page tables for
// the current process at any given time.
// TODO: Is this even worth implementing? Games may retrieve this value via
// an SDK function that gets used + available system resource size for debug
// or diagnostic purposes. However, it seems unlikely that a game would make
// decisions based on how much system memory is dedicated to its page tables.
// Is returning a value other than zero wise?
return 0;
}
/// Whether this process is an AArch64 or AArch32 process.
bool Is64BitProcess() const {
return m_is_64bit_process;
}
bool IsSuspended() const {
return m_is_suspended;
}
void SetSuspended(bool suspended) {
m_is_suspended = suspended;
}
/// Gets the total running time of the process instance in ticks.
u64 GetCPUTimeTicks() const {
return m_total_process_running_time_ticks;
}
/// Updates the total running time, adding the given ticks to it.
void UpdateCPUTimeTicks(u64 ticks) {
m_total_process_running_time_ticks += ticks;
}
/// Gets the process schedule count, used for thread yielding
s64 GetScheduledCount() const {
return m_schedule_count;
}
/// Increments the process schedule count, used for thread yielding.
void IncrementScheduledCount() {
++m_schedule_count;
}
void IncrementRunningThreadCount();
void DecrementRunningThreadCount();
void SetRunningThread(s32 core, KThread* thread, u64 idle_count) {
m_running_threads[core] = thread;
m_running_thread_idle_counts[core] = idle_count;
}
void ClearRunningThread(KThread* thread) {
for (size_t i = 0; i < m_running_threads.size(); ++i) {
if (m_running_threads[i] == thread) {
m_running_threads[i] = nullptr;
}
}
}
[[nodiscard]] KThread* GetRunningThread(s32 core) const {
return m_running_threads[core];
}
bool ReleaseUserException(KThread* thread);
[[nodiscard]] KThread* GetPinnedThread(s32 core_id) const {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
return m_pinned_threads[core_id];
}
/// Gets 8 bytes of random data for svcGetInfo RandomEntropy
u64 GetRandomEntropy(std::size_t index) const {
return m_random_entropy.at(index);
}
/// Retrieves the total physical memory available to this process in bytes.
u64 GetTotalPhysicalMemoryAvailable();
/// Retrieves the total physical memory available to this process in bytes,
/// without the size of the personal system resource heap added to it.
u64 GetTotalPhysicalMemoryAvailableWithoutSystemResource();
/// Retrieves the total physical memory used by this process in bytes.
u64 GetTotalPhysicalMemoryUsed();
/// Retrieves the total physical memory used by this process in bytes,
/// without the size of the personal system resource heap added to it.
u64 GetTotalPhysicalMemoryUsedWithoutSystemResource();
/// Gets the list of all threads created with this process as their owner.
std::list<KThread*>& GetThreadList() {
return m_thread_list;
}
/// Registers a thread as being created under this process,
/// adding it to this process' thread list.
void RegisterThread(KThread* thread);
/// Unregisters a thread from this process, removing it
/// from this process' thread list.
void UnregisterThread(KThread* thread);
/// Retrieves the number of available threads for this process.
u64 GetFreeThreadCount() const;
/// Clears the signaled state of the process if and only if it's signaled.
///
/// @pre The process must not be already terminated. If this is called on a
/// terminated process, then ResultInvalidState will be returned.
///
/// @pre The process must be in a signaled state. If this is called on a
/// process instance that is not signaled, ResultInvalidState will be
/// returned.
Result Reset();
/**
* Loads process-specifics configuration info with metadata provided
* by an executable.
*
* @param metadata The provided metadata to load process specific info from.
*
* @returns ResultSuccess if all relevant metadata was able to be
* loaded and parsed. Otherwise, an error code is returned.
*/
Result LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
bool is_hbl);
/**
* Starts the main application thread for this process.
*
* @param main_thread_priority The priority for the main thread.
* @param stack_size The stack size for the main thread in bytes.
*/
void Run(s32 main_thread_priority, u64 stack_size);
/**
* Prepares a process for termination by stopping all of its threads
* and clearing any other resources.
*/
void PrepareForTermination();
void LoadModule(CodeSet code_set, KProcessAddress base_addr);
bool IsInitialized() const override {
return m_is_initialized;
}
static void PostDestroy(uintptr_t arg) {}
void Finalize() override;
u64 GetId() const override {
return GetProcessId();
}
bool IsHbl() const {
return m_is_hbl;
}
bool IsSignaled() const override;
void DoWorkerTaskImpl();
Result SetActivity(ProcessActivity activity);
void PinCurrentThread(s32 core_id);
void UnpinCurrentThread(s32 core_id);
void UnpinThread(KThread* thread);
KLightLock& GetStateLock() {
return m_state_lock;
}
Result AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size);
void RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size);
///////////////////////////////////////////////////////////////////////////////////////////////
// Thread-local storage management
// Marks the next available region as used and returns the address of the slot.
[[nodiscard]] Result CreateThreadLocalRegion(KProcessAddress* out);
// Frees a used TLS slot identified by the given address
Result DeleteThreadLocalRegion(KProcessAddress addr);
///////////////////////////////////////////////////////////////////////////////////////////////
// Debug watchpoint management
// Attempts to insert a watchpoint into a free slot. Returns false if none are available.
bool InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type);
// Attempts to remove the watchpoint specified by the given parameters.
bool RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type);
const std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS>& GetWatchpoints() const {
return m_watchpoints;
}
const std::string& GetName() {
return name;
}
private: private:
using SharedMemoryInfoList = Common::IntrusiveListBaseTraits<KSharedMemoryInfo>::ListType;
using TLPTree =
Common::IntrusiveRedBlackTreeBaseTraits<KThreadLocalPage>::TreeType<KThreadLocalPage>;
using TLPIterator = TLPTree::iterator;
private:
KPageTable m_page_table;
std::atomic<size_t> m_used_kernel_memory_size{};
TLPTree m_fully_used_tlp_tree{};
TLPTree m_partially_used_tlp_tree{};
s32 m_ideal_core_id{};
KResourceLimit* m_resource_limit{};
KSystemResource* m_system_resource{};
size_t m_memory_release_hint{};
State m_state{};
KLightLock m_state_lock;
KLightLock m_list_lock;
KConditionVariable m_cond_var;
KAddressArbiter m_address_arbiter;
std::array<u64, 4> m_entropy{};
bool m_is_signaled{};
bool m_is_initialized{};
bool m_is_application{};
bool m_is_default_application_system_resource{};
bool m_is_hbl{};
std::array<char, 13> m_name{};
std::atomic<u16> m_num_running_threads{};
Svc::CreateProcessFlag m_flags{};
KMemoryManager::Pool m_memory_pool{};
s64 m_schedule_count{};
KCapabilities m_capabilities{};
u64 m_program_id{};
u64 m_process_id{};
KProcessAddress m_code_address{};
size_t m_code_size{};
size_t m_main_thread_stack_size{};
size_t m_max_process_memory{};
u32 m_version{};
KHandleTable m_handle_table;
KProcessAddress m_plr_address{};
KThread* m_exception_thread{};
ThreadList m_thread_list{};
SharedMemoryInfoList m_shared_memory_list{};
bool m_is_suspended{};
bool m_is_immortal{};
bool m_is_handle_table_initialized{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_running_threads{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> m_running_thread_idle_counts{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> m_running_thread_switch_counts{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_pinned_threads{};
std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS> m_watchpoints{};
std::map<KProcessAddress, u64> m_debug_page_refcounts{};
std::atomic<s64> m_cpu_time{};
std::atomic<s64> m_num_process_switches{};
std::atomic<s64> m_num_thread_switches{};
std::atomic<s64> m_num_fpu_switches{};
std::atomic<s64> m_num_supervisor_calls{};
std::atomic<s64> m_num_ipc_messages{};
std::atomic<s64> m_num_ipc_replies{};
std::atomic<s64> m_num_ipc_receives{};
private:
Result StartTermination();
void FinishTermination();
void PinThread(s32 core_id, KThread* thread) { void PinThread(s32 core_id, KThread* thread) {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES)); ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
ASSERT(thread != nullptr); ASSERT(thread != nullptr);
@ -431,6 +138,395 @@ private:
m_pinned_threads[core_id] = nullptr; m_pinned_threads[core_id] = nullptr;
} }
public:
explicit KProcess(KernelCore& kernel);
~KProcess() override;
Result Initialize(const Svc::CreateProcessParameter& params, KResourceLimit* res_limit,
bool is_real);
Result Initialize(const Svc::CreateProcessParameter& params, const KPageGroup& pg,
std::span<const u32> caps, KResourceLimit* res_limit,
KMemoryManager::Pool pool, bool immortal);
Result Initialize(const Svc::CreateProcessParameter& params, std::span<const u32> user_caps,
KResourceLimit* res_limit, KMemoryManager::Pool pool);
void Exit();
const char* GetName() const {
return m_name.data();
}
u64 GetProgramId() const {
return m_program_id;
}
u64 GetProcessId() const {
return m_process_id;
}
State GetState() const {
return m_state;
}
u64 GetCoreMask() const {
return m_capabilities.GetCoreMask();
}
u64 GetPhysicalCoreMask() const {
return m_capabilities.GetPhysicalCoreMask();
}
u64 GetPriorityMask() const {
return m_capabilities.GetPriorityMask();
}
s32 GetIdealCoreId() const {
return m_ideal_core_id;
}
void SetIdealCoreId(s32 core_id) {
m_ideal_core_id = core_id;
}
bool CheckThreadPriority(s32 prio) const {
return ((1ULL << prio) & this->GetPriorityMask()) != 0;
}
u32 GetCreateProcessFlags() const {
return static_cast<u32>(m_flags);
}
bool Is64Bit() const {
return True(m_flags & Svc::CreateProcessFlag::Is64Bit);
}
KProcessAddress GetEntryPoint() const {
return m_code_address;
}
size_t GetMainStackSize() const {
return m_main_thread_stack_size;
}
KMemoryManager::Pool GetMemoryPool() const {
return m_memory_pool;
}
u64 GetRandomEntropy(size_t i) const {
return m_entropy[i];
}
bool IsApplication() const {
return m_is_application;
}
bool IsDefaultApplicationSystemResource() const {
return m_is_default_application_system_resource;
}
bool IsSuspended() const {
return m_is_suspended;
}
void SetSuspended(bool suspended) {
m_is_suspended = suspended;
}
Result Terminate();
bool IsTerminated() const {
return m_state == State::Terminated;
}
bool IsPermittedSvc(u32 svc_id) const {
return m_capabilities.IsPermittedSvc(svc_id);
}
bool IsPermittedInterrupt(s32 interrupt_id) const {
return m_capabilities.IsPermittedInterrupt(interrupt_id);
}
bool IsPermittedDebug() const {
return m_capabilities.IsPermittedDebug();
}
bool CanForceDebug() const {
return m_capabilities.CanForceDebug();
}
bool IsHbl() const {
return m_is_hbl;
}
Kernel::KMemoryManager::Direction GetAllocateOption() const {
// TODO: property of the KPageTableBase
return KMemoryManager::Direction::FromFront;
}
ThreadList& GetThreadList() {
return m_thread_list;
}
const ThreadList& GetThreadList() const {
return m_thread_list;
}
bool EnterUserException();
bool LeaveUserException();
bool ReleaseUserException(KThread* thread);
KThread* GetPinnedThread(s32 core_id) const {
ASSERT(0 <= core_id && core_id < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
return m_pinned_threads[core_id];
}
const Svc::SvcAccessFlagSet& GetSvcPermissions() const {
return m_capabilities.GetSvcPermissions();
}
KResourceLimit* GetResourceLimit() const {
return m_resource_limit;
}
bool ReserveResource(Svc::LimitableResource which, s64 value);
bool ReserveResource(Svc::LimitableResource which, s64 value, s64 timeout);
void ReleaseResource(Svc::LimitableResource which, s64 value);
void ReleaseResource(Svc::LimitableResource which, s64 value, s64 hint);
KLightLock& GetStateLock() {
return m_state_lock;
}
KLightLock& GetListLock() {
return m_list_lock;
}
KPageTable& GetPageTable() {
return m_page_table;
}
const KPageTable& GetPageTable() const {
return m_page_table;
}
KHandleTable& GetHandleTable() {
return m_handle_table;
}
const KHandleTable& GetHandleTable() const {
return m_handle_table;
}
size_t GetUsedUserPhysicalMemorySize() const;
size_t GetTotalUserPhysicalMemorySize() const;
size_t GetUsedNonSystemUserPhysicalMemorySize() const;
size_t GetTotalNonSystemUserPhysicalMemorySize() const;
Result AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size);
void RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size);
Result CreateThreadLocalRegion(KProcessAddress* out);
Result DeleteThreadLocalRegion(KProcessAddress addr);
KProcessAddress GetProcessLocalRegionAddress() const {
return m_plr_address;
}
KThread* GetExceptionThread() const {
return m_exception_thread;
}
void AddCpuTime(s64 diff) {
m_cpu_time += diff;
}
s64 GetCpuTime() {
return m_cpu_time.load();
}
s64 GetScheduledCount() const {
return m_schedule_count;
}
void IncrementScheduledCount() {
++m_schedule_count;
}
void IncrementRunningThreadCount();
void DecrementRunningThreadCount();
size_t GetRequiredSecureMemorySizeNonDefault() const {
if (!this->IsDefaultApplicationSystemResource() && m_system_resource->IsSecureResource()) {
auto* secure_system_resource = static_cast<KSecureSystemResource*>(m_system_resource);
return secure_system_resource->CalculateRequiredSecureMemorySize();
}
return 0;
}
size_t GetRequiredSecureMemorySize() const {
if (m_system_resource->IsSecureResource()) {
auto* secure_system_resource = static_cast<KSecureSystemResource*>(m_system_resource);
return secure_system_resource->CalculateRequiredSecureMemorySize();
}
return 0;
}
size_t GetTotalSystemResourceSize() const {
if (!this->IsDefaultApplicationSystemResource() && m_system_resource->IsSecureResource()) {
auto* secure_system_resource = static_cast<KSecureSystemResource*>(m_system_resource);
return secure_system_resource->GetSize();
}
return 0;
}
size_t GetUsedSystemResourceSize() const {
if (!this->IsDefaultApplicationSystemResource() && m_system_resource->IsSecureResource()) {
auto* secure_system_resource = static_cast<KSecureSystemResource*>(m_system_resource);
return secure_system_resource->GetUsedSize();
}
return 0;
}
void SetRunningThread(s32 core, KThread* thread, u64 idle_count, u64 switch_count) {
m_running_threads[core] = thread;
m_running_thread_idle_counts[core] = idle_count;
m_running_thread_switch_counts[core] = switch_count;
}
void ClearRunningThread(KThread* thread) {
for (size_t i = 0; i < m_running_threads.size(); ++i) {
if (m_running_threads[i] == thread) {
m_running_threads[i] = nullptr;
}
}
}
const KSystemResource& GetSystemResource() const {
return *m_system_resource;
}
const KMemoryBlockSlabManager& GetMemoryBlockSlabManager() const {
return m_system_resource->GetMemoryBlockSlabManager();
}
const KBlockInfoManager& GetBlockInfoManager() const {
return m_system_resource->GetBlockInfoManager();
}
const KPageTableManager& GetPageTableManager() const {
return m_system_resource->GetPageTableManager();
}
KThread* GetRunningThread(s32 core) const {
return m_running_threads[core];
}
u64 GetRunningThreadIdleCount(s32 core) const {
return m_running_thread_idle_counts[core];
}
u64 GetRunningThreadSwitchCount(s32 core) const {
return m_running_thread_switch_counts[core];
}
void RegisterThread(KThread* thread);
void UnregisterThread(KThread* thread);
Result Run(s32 priority, size_t stack_size);
Result Reset();
void SetDebugBreak() {
if (m_state == State::RunningAttached) {
this->ChangeState(State::DebugBreak);
}
}
void SetAttached() {
if (m_state == State::DebugBreak) {
this->ChangeState(State::RunningAttached);
}
}
Result SetActivity(Svc::ProcessActivity activity);
void PinCurrentThread();
void UnpinCurrentThread();
void UnpinThread(KThread* thread);
void SignalConditionVariable(uintptr_t cv_key, int32_t count) {
return m_cond_var.Signal(cv_key, count);
}
Result WaitConditionVariable(KProcessAddress address, uintptr_t cv_key, u32 tag, s64 ns) {
R_RETURN(m_cond_var.Wait(address, cv_key, tag, ns));
}
Result SignalAddressArbiter(uintptr_t address, Svc::SignalType signal_type, s32 value,
s32 count) {
R_RETURN(m_address_arbiter.SignalToAddress(address, signal_type, value, count));
}
Result WaitAddressArbiter(uintptr_t address, Svc::ArbitrationType arb_type, s32 value,
s64 timeout) {
R_RETURN(m_address_arbiter.WaitForAddress(address, arb_type, value, timeout));
}
Result GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids, s32 max_out_count);
static void Switch(KProcess* cur_process, KProcess* next_process);
public:
// Attempts to insert a watchpoint into a free slot. Returns false if none are available.
bool InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type);
// Attempts to remove the watchpoint specified by the given parameters.
bool RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type);
const std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS>& GetWatchpoints() const {
return m_watchpoints;
}
public:
Result LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
bool is_hbl);
void LoadModule(CodeSet code_set, KProcessAddress base_addr);
Core::Memory::Memory& GetMemory() const;
public:
// Overridden parent functions.
bool IsInitialized() const override {
return m_is_initialized;
}
static void PostDestroy(uintptr_t arg) {}
void Finalize() override;
u64 GetIdImpl() const {
return this->GetProcessId();
}
u64 GetId() const override {
return this->GetIdImpl();
}
virtual bool IsSignaled() const override {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
void DoWorkerTaskImpl();
private:
void ChangeState(State new_state) {
if (m_state != new_state) {
m_state = new_state;
m_is_signaled = true;
this->NotifyAvailable();
}
}
Result InitializeHandleTable(s32 size) {
// Try to initialize the handle table.
R_TRY(m_handle_table.Initialize(size));
// We succeeded, so note that we did.
m_is_handle_table_initialized = true;
R_SUCCEED();
}
void FinalizeHandleTable() { void FinalizeHandleTable() {
// Finalize the table. // Finalize the table.
m_handle_table.Finalize(); m_handle_table.Finalize();
@ -438,118 +534,6 @@ private:
// Note that the table is finalized. // Note that the table is finalized.
m_is_handle_table_initialized = false; m_is_handle_table_initialized = false;
} }
void ChangeState(State new_state);
/// Allocates the main thread stack for the process, given the stack size in bytes.
Result AllocateMainThreadStack(std::size_t stack_size);
/// Memory manager for this process
KPageTable m_page_table;
/// Current status of the process
State m_state{};
/// The ID of this process
u64 m_process_id = 0;
/// Title ID corresponding to the process
u64 m_program_id = 0;
/// Specifies additional memory to be reserved for the process's memory management by the
/// system. When this is non-zero, secure memory is allocated and used for page table allocation
/// instead of using the normal global page tables/memory block management.
u32 m_system_resource_size = 0;
/// Resource limit descriptor for this process
KResourceLimit* m_resource_limit{};
KVirtualAddress m_system_resource_address{};
/// The ideal CPU core for this process, threads are scheduled on this core by default.
u8 m_ideal_core = 0;
/// Contains the parsed process capability descriptors.
ProcessCapabilities m_capabilities;
/// Whether or not this process is AArch64, or AArch32.
/// By default, we currently assume this is true, unless otherwise
/// specified by metadata provided to the process during loading.
bool m_is_64bit_process = true;
/// Total running time for the process in ticks.
std::atomic<u64> m_total_process_running_time_ticks = 0;
/// Per-process handle table for storing created object handles in.
KHandleTable m_handle_table;
/// Per-process address arbiter.
KAddressArbiter m_address_arbiter;
/// The per-process mutex lock instance used for handling various
/// forms of services, such as lock arbitration, and condition
/// variable related facilities.
KConditionVariable m_condition_var;
/// Address indicating the location of the process' dedicated TLS region.
KProcessAddress m_plr_address = 0;
/// Address indicating the location of the process's entry point.
KProcessAddress m_code_address = 0;
/// Random values for svcGetInfo RandomEntropy
std::array<u64, RANDOM_ENTROPY_SIZE> m_random_entropy{};
/// List of threads that are running with this process as their owner.
std::list<KThread*> m_thread_list;
/// List of shared memory that are running with this process as their owner.
std::list<KSharedMemoryInfo*> m_shared_memory_list;
/// Address of the top of the main thread's stack
KProcessAddress m_main_thread_stack_top{};
/// Size of the main thread's stack
std::size_t m_main_thread_stack_size{};
/// Memory usage capacity for the process
std::size_t m_memory_usage_capacity{};
/// Process total image size
std::size_t m_image_size{};
/// Schedule count of this process
s64 m_schedule_count{};
size_t m_memory_release_hint{};
std::string name{};
bool m_is_signaled{};
bool m_is_suspended{};
bool m_is_immortal{};
bool m_is_handle_table_initialized{};
bool m_is_initialized{};
bool m_is_hbl{};
std::atomic<u16> m_num_running_threads{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_running_threads{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> m_running_thread_idle_counts{};
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> m_pinned_threads{};
std::array<DebugWatchpoint, Core::Hardware::NUM_WATCHPOINTS> m_watchpoints{};
std::map<KProcessAddress, u64> m_debug_page_refcounts;
KThread* m_exception_thread{};
KLightLock m_state_lock;
KLightLock m_list_lock;
using TLPTree =
Common::IntrusiveRedBlackTreeBaseTraits<KThreadLocalPage>::TreeType<KThreadLocalPage>;
using TLPIterator = TLPTree::iterator;
TLPTree m_fully_used_tlp_tree;
TLPTree m_partially_used_tlp_tree;
}; };
} // namespace Kernel } // namespace Kernel

View file

@ -190,7 +190,7 @@ u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
if (m_state.should_count_idle) { if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] { if (highest_thread != nullptr) [[likely]] {
if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) { if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count); process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count, 0);
} }
} else { } else {
m_state.idle_count++; m_state.idle_count++;
@ -356,7 +356,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
const s64 tick_diff = cur_tick - prev_tick; const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff); cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) { if (cur_process != nullptr) {
cur_process->UpdateCPUTimeTicks(tick_diff); cur_process->AddCpuTime(tick_diff);
} }
m_last_context_switch_time = cur_tick; m_last_context_switch_time = cur_tick;

View file

@ -1,25 +1,100 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project // SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_system_resource.h" #include "core/hle/kernel/k_system_resource.h"
namespace Kernel { namespace Kernel {
Result KSecureSystemResource::Initialize(size_t size, KResourceLimit* resource_limit, Result KSecureSystemResource::Initialize(size_t size, KResourceLimit* resource_limit,
KMemoryManager::Pool pool) { KMemoryManager::Pool pool) {
// Unimplemented // Set members.
UNREACHABLE(); m_resource_limit = resource_limit;
m_resource_size = size;
m_resource_pool = pool;
// Determine required size for our secure resource.
const size_t secure_size = this->CalculateRequiredSecureMemorySize();
// Reserve memory for our secure resource.
KScopedResourceReservation memory_reservation(
m_resource_limit, Svc::LimitableResource::PhysicalMemoryMax, secure_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Allocate secure memory.
R_TRY(KSystemControl::AllocateSecureMemory(m_kernel, std::addressof(m_resource_address),
m_resource_size, static_cast<u32>(m_resource_pool)));
ASSERT(m_resource_address != 0);
// Ensure we clean up the secure memory, if we fail past this point.
ON_RESULT_FAILURE {
KSystemControl::FreeSecureMemory(m_kernel, m_resource_address, m_resource_size,
static_cast<u32>(m_resource_pool));
};
// Check that our allocation is bigger than the reference counts needed for it.
const size_t rc_size =
Common::AlignUp(KPageTableSlabHeap::CalculateReferenceCountSize(m_resource_size), PageSize);
R_UNLESS(m_resource_size > rc_size, ResultOutOfMemory);
// Get resource pointer.
KPhysicalAddress resource_paddr =
KPageTable::GetHeapPhysicalAddress(m_kernel.MemoryLayout(), m_resource_address);
auto* resource =
m_kernel.System().DeviceMemory().GetPointer<KPageTableManager::RefCount>(resource_paddr);
// Initialize slab heaps.
m_dynamic_page_manager.Initialize(m_resource_address + rc_size, m_resource_size - rc_size,
PageSize);
m_page_table_heap.Initialize(std::addressof(m_dynamic_page_manager), 0, resource);
m_memory_block_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
m_block_info_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
// Initialize managers.
m_page_table_manager.Initialize(std::addressof(m_dynamic_page_manager),
std::addressof(m_page_table_heap));
m_memory_block_slab_manager.Initialize(std::addressof(m_dynamic_page_manager),
std::addressof(m_memory_block_heap));
m_block_info_manager.Initialize(std::addressof(m_dynamic_page_manager),
std::addressof(m_block_info_heap));
// Set our managers.
this->SetManagers(m_memory_block_slab_manager, m_block_info_manager, m_page_table_manager);
// Commit the memory reservation.
memory_reservation.Commit();
// Open reference to our resource limit.
m_resource_limit->Open();
// Set ourselves as initialized.
m_is_initialized = true;
R_SUCCEED();
} }
void KSecureSystemResource::Finalize() { void KSecureSystemResource::Finalize() {
// Unimplemented // Check that we have no outstanding allocations.
UNREACHABLE(); ASSERT(m_memory_block_slab_manager.GetUsed() == 0);
ASSERT(m_block_info_manager.GetUsed() == 0);
ASSERT(m_page_table_manager.GetUsed() == 0);
// Free our secure memory.
KSystemControl::FreeSecureMemory(m_kernel, m_resource_address, m_resource_size,
static_cast<u32>(m_resource_pool));
// Release the memory reservation.
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax,
this->CalculateRequiredSecureMemorySize());
// Close reference to our resource limit.
m_resource_limit->Close();
} }
size_t KSecureSystemResource::CalculateRequiredSecureMemorySize(size_t size, size_t KSecureSystemResource::CalculateRequiredSecureMemorySize(size_t size,
KMemoryManager::Pool pool) { KMemoryManager::Pool pool) {
// Unimplemented return KSystemControl::CalculateRequiredSecureMemorySize(size, static_cast<u32>(pool));
UNREACHABLE();
} }
} // namespace Kernel } // namespace Kernel

View file

@ -122,16 +122,15 @@ Result KThread::Initialize(KThreadFunction func, uintptr_t arg, KProcessAddress
case ThreadType::Main: case ThreadType::Main:
ASSERT(arg == 0); ASSERT(arg == 0);
[[fallthrough]]; [[fallthrough]];
case ThreadType::HighPriority:
[[fallthrough]];
case ThreadType::Dummy:
[[fallthrough]];
case ThreadType::User: case ThreadType::User:
ASSERT(((owner == nullptr) || ASSERT(((owner == nullptr) ||
(owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask())); (owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
ASSERT(((owner == nullptr) || (prio > Svc::LowestThreadPriority) || ASSERT(((owner == nullptr) || (prio > Svc::LowestThreadPriority) ||
(owner->GetPriorityMask() | (1ULL << prio)) == owner->GetPriorityMask())); (owner->GetPriorityMask() | (1ULL << prio)) == owner->GetPriorityMask()));
break; break;
case ThreadType::HighPriority:
case ThreadType::Dummy:
break;
case ThreadType::Kernel: case ThreadType::Kernel:
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
@ -216,6 +215,7 @@ Result KThread::Initialize(KThreadFunction func, uintptr_t arg, KProcessAddress
// Setup the TLS, if needed. // Setup the TLS, if needed.
if (type == ThreadType::User) { if (type == ThreadType::User) {
R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address))); R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address)));
owner->GetMemory().ZeroBlock(m_tls_address, Svc::ThreadLocalRegionSize);
} }
m_parent = owner; m_parent = owner;
@ -403,7 +403,7 @@ void KThread::StartTermination() {
if (m_parent != nullptr) { if (m_parent != nullptr) {
m_parent->ReleaseUserException(this); m_parent->ReleaseUserException(this);
if (m_parent->GetPinnedThread(GetCurrentCoreId(m_kernel)) == this) { if (m_parent->GetPinnedThread(GetCurrentCoreId(m_kernel)) == this) {
m_parent->UnpinCurrentThread(m_core_id); m_parent->UnpinCurrentThread();
} }
} }
@ -415,10 +415,6 @@ void KThread::StartTermination() {
m_parent->ClearRunningThread(this); m_parent->ClearRunningThread(this);
} }
// Signal.
m_signaled = true;
KSynchronizationObject::NotifyAvailable();
// Clear previous thread in KScheduler. // Clear previous thread in KScheduler.
KScheduler::ClearPreviousThread(m_kernel, this); KScheduler::ClearPreviousThread(m_kernel, this);
@ -437,6 +433,13 @@ void KThread::FinishTermination() {
} }
} }
// Acquire the scheduler lock.
KScopedSchedulerLock sl{m_kernel};
// Signal.
m_signaled = true;
KSynchronizationObject::NotifyAvailable();
// Close the thread. // Close the thread.
this->Close(); this->Close();
} }
@ -820,7 +823,7 @@ void KThread::CloneFpuStatus() {
ASSERT(this->GetOwnerProcess() != nullptr); ASSERT(this->GetOwnerProcess() != nullptr);
ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(m_kernel)); ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(m_kernel));
if (this->GetOwnerProcess()->Is64BitProcess()) { if (this->GetOwnerProcess()->Is64Bit()) {
// Clone FPSR and FPCR. // Clone FPSR and FPCR.
ThreadContext64 cur_ctx{}; ThreadContext64 cur_ctx{};
m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx); m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);
@ -923,7 +926,7 @@ Result KThread::GetThreadContext3(Common::ScratchBuffer<u8>& out) {
// If we're not terminating, get the thread's user context. // If we're not terminating, get the thread's user context.
if (!this->IsTerminationRequested()) { if (!this->IsTerminationRequested()) {
if (m_parent->Is64BitProcess()) { if (m_parent->Is64Bit()) {
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits. // Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
auto context = GetContext64(); auto context = GetContext64();
context.pstate &= 0xFF0FFE20; context.pstate &= 0xFF0FFE20;
@ -1174,6 +1177,9 @@ Result KThread::Run() {
owner->IncrementRunningThreadCount(); owner->IncrementRunningThreadCount();
} }
// Open a reference, now that we're running.
this->Open();
// Set our state and finish. // Set our state and finish.
this->SetState(ThreadState::Runnable); this->SetState(ThreadState::Runnable);

View file

@ -721,6 +721,7 @@ private:
// For core KThread implementation // For core KThread implementation
ThreadContext32 m_thread_context_32{}; ThreadContext32 m_thread_context_32{};
ThreadContext64 m_thread_context_64{}; ThreadContext64 m_thread_context_64{};
Common::IntrusiveListNode m_process_list_node;
Common::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node{}; Common::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node{};
s32 m_priority{}; s32 m_priority{};
using ConditionVariableThreadTreeTraits = using ConditionVariableThreadTreeTraits =

View file

@ -101,35 +101,31 @@ struct KernelCore::Impl {
void InitializeCores() { void InitializeCores() {
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) { for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
cores[core_id]->Initialize((*application_process).Is64BitProcess()); cores[core_id]->Initialize((*application_process).Is64Bit());
system.ApplicationMemory().SetCurrentPageTable(*application_process, core_id); system.ApplicationMemory().SetCurrentPageTable(*application_process, core_id);
} }
} }
void CloseApplicationProcess() { void TerminateApplicationProcess() {
KProcess* old_process = application_process.exchange(nullptr); application_process.load()->Terminate();
if (old_process == nullptr) {
return;
}
// old_process->Close();
// TODO: The process should be destroyed based on accurate ref counting after
// calling Close(). Adding a manual Destroy() call instead to avoid a memory leak.
old_process->Finalize();
old_process->Destroy();
} }
void Shutdown() { void Shutdown() {
is_shutting_down.store(true, std::memory_order_relaxed); is_shutting_down.store(true, std::memory_order_relaxed);
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); }); SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
process_list.clear();
CloseServices(); CloseServices();
auto* old_process = application_process.exchange(nullptr);
if (old_process) {
old_process->Close();
}
process_list.clear();
next_object_id = 0; next_object_id = 0;
next_kernel_process_id = KProcess::InitialKIPIDMin; next_kernel_process_id = KProcess::InitialProcessIdMin;
next_user_process_id = KProcess::ProcessIDMin; next_user_process_id = KProcess::ProcessIdMin;
next_thread_id = 1; next_thread_id = 1;
global_handle_table->Finalize(); global_handle_table->Finalize();
@ -176,8 +172,6 @@ struct KernelCore::Impl {
} }
} }
CloseApplicationProcess();
// Track kernel objects that were not freed on shutdown // Track kernel objects that were not freed on shutdown
{ {
std::scoped_lock lk{registered_objects_lock}; std::scoped_lock lk{registered_objects_lock};
@ -344,6 +338,8 @@ struct KernelCore::Impl {
// Create the system page table managers. // Create the system page table managers.
app_system_resource = std::make_unique<KSystemResource>(kernel); app_system_resource = std::make_unique<KSystemResource>(kernel);
sys_system_resource = std::make_unique<KSystemResource>(kernel); sys_system_resource = std::make_unique<KSystemResource>(kernel);
KAutoObject::Create(std::addressof(*app_system_resource));
KAutoObject::Create(std::addressof(*sys_system_resource));
// Set the managers for the system resources. // Set the managers for the system resources.
app_system_resource->SetManagers(*app_memory_block_manager, *app_block_info_manager, app_system_resource->SetManagers(*app_memory_block_manager, *app_block_info_manager,
@ -792,8 +788,8 @@ struct KernelCore::Impl {
std::mutex registered_in_use_objects_lock; std::mutex registered_in_use_objects_lock;
std::atomic<u32> next_object_id{0}; std::atomic<u32> next_object_id{0};
std::atomic<u64> next_kernel_process_id{KProcess::InitialKIPIDMin}; std::atomic<u64> next_kernel_process_id{KProcess::InitialProcessIdMin};
std::atomic<u64> next_user_process_id{KProcess::ProcessIDMin}; std::atomic<u64> next_user_process_id{KProcess::ProcessIdMin};
std::atomic<u64> next_thread_id{1}; std::atomic<u64> next_thread_id{1};
// Lists all processes that exist in the current session. // Lists all processes that exist in the current session.
@ -924,10 +920,6 @@ const KProcess* KernelCore::ApplicationProcess() const {
return impl->application_process; return impl->application_process;
} }
void KernelCore::CloseApplicationProcess() {
impl->CloseApplicationProcess();
}
const std::vector<KProcess*>& KernelCore::GetProcessList() const { const std::vector<KProcess*>& KernelCore::GetProcessList() const {
return impl->process_list; return impl->process_list;
} }
@ -1128,8 +1120,8 @@ std::jthread KernelCore::RunOnHostCoreProcess(std::string&& process_name,
std::function<void()> func) { std::function<void()> func) {
// Make a new process. // Make a new process.
KProcess* process = KProcess::Create(*this); KProcess* process = KProcess::Create(*this);
ASSERT(R_SUCCEEDED(KProcess::Initialize(process, System(), "", KProcess::ProcessType::Userland, ASSERT(R_SUCCEEDED(
GetSystemResourceLimit()))); process->Initialize(Svc::CreateProcessParameter{}, GetSystemResourceLimit(), false)));
// Ensure that we don't hold onto any extra references. // Ensure that we don't hold onto any extra references.
SCOPE_EXIT({ process->Close(); }); SCOPE_EXIT({ process->Close(); });
@ -1156,8 +1148,8 @@ void KernelCore::RunOnGuestCoreProcess(std::string&& process_name, std::function
// Make a new process. // Make a new process.
KProcess* process = KProcess::Create(*this); KProcess* process = KProcess::Create(*this);
ASSERT(R_SUCCEEDED(KProcess::Initialize(process, System(), "", KProcess::ProcessType::Userland, ASSERT(R_SUCCEEDED(
GetSystemResourceLimit()))); process->Initialize(Svc::CreateProcessParameter{}, GetSystemResourceLimit(), false)));
// Ensure that we don't hold onto any extra references. // Ensure that we don't hold onto any extra references.
SCOPE_EXIT({ process->Close(); }); SCOPE_EXIT({ process->Close(); });
@ -1266,7 +1258,8 @@ const Kernel::KSharedMemory& KernelCore::GetHidBusSharedMem() const {
void KernelCore::SuspendApplication(bool suspended) { void KernelCore::SuspendApplication(bool suspended) {
const bool should_suspend{exception_exited || suspended}; const bool should_suspend{exception_exited || suspended};
const auto activity = should_suspend ? ProcessActivity::Paused : ProcessActivity::Runnable; const auto activity =
should_suspend ? Svc::ProcessActivity::Paused : Svc::ProcessActivity::Runnable;
// Get the application process. // Get the application process.
KScopedAutoObject<KProcess> process = ApplicationProcess(); KScopedAutoObject<KProcess> process = ApplicationProcess();
@ -1300,6 +1293,8 @@ void KernelCore::SuspendApplication(bool suspended) {
} }
void KernelCore::ShutdownCores() { void KernelCore::ShutdownCores() {
impl->TerminateApplicationProcess();
KScopedSchedulerLock lk{*this}; KScopedSchedulerLock lk{*this};
for (auto* thread : impl->shutdown_threads) { for (auto* thread : impl->shutdown_threads) {

View file

@ -134,9 +134,6 @@ public:
/// Retrieves a const pointer to the application process. /// Retrieves a const pointer to the application process.
const KProcess* ApplicationProcess() const; const KProcess* ApplicationProcess() const;
/// Closes the application process.
void CloseApplicationProcess();
/// Retrieves the list of processes. /// Retrieves the list of processes.
const std::vector<KProcess*>& GetProcessList() const; const std::vector<KProcess*>& GetProcessList() const;

View file

@ -4426,7 +4426,7 @@ void Call(Core::System& system, u32 imm) {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.EnterSVCProfile(); kernel.EnterSVCProfile();
if (GetCurrentProcess(system.Kernel()).Is64BitProcess()) { if (GetCurrentProcess(system.Kernel()).Is64Bit()) {
Call64(system, imm); Call64(system, imm);
} else { } else {
Call32(system, imm); Call32(system, imm);

View file

@ -86,20 +86,19 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
R_SUCCEED(); R_SUCCEED();
case InfoType::TotalMemorySize: case InfoType::TotalMemorySize:
*result = process->GetTotalPhysicalMemoryAvailable(); *result = process->GetTotalUserPhysicalMemorySize();
R_SUCCEED(); R_SUCCEED();
case InfoType::UsedMemorySize: case InfoType::UsedMemorySize:
*result = process->GetTotalPhysicalMemoryUsed(); *result = process->GetUsedUserPhysicalMemorySize();
R_SUCCEED(); R_SUCCEED();
case InfoType::SystemResourceSizeTotal: case InfoType::SystemResourceSizeTotal:
*result = process->GetSystemResourceSize(); *result = process->GetTotalSystemResourceSize();
R_SUCCEED(); R_SUCCEED();
case InfoType::SystemResourceSizeUsed: case InfoType::SystemResourceSizeUsed:
LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage"); *result = process->GetUsedSystemResourceSize();
*result = process->GetSystemResourceUsage();
R_SUCCEED(); R_SUCCEED();
case InfoType::ProgramId: case InfoType::ProgramId:
@ -111,20 +110,29 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
R_SUCCEED(); R_SUCCEED();
case InfoType::TotalNonSystemMemorySize: case InfoType::TotalNonSystemMemorySize:
*result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource(); *result = process->GetTotalNonSystemUserPhysicalMemorySize();
R_SUCCEED(); R_SUCCEED();
case InfoType::UsedNonSystemMemorySize: case InfoType::UsedNonSystemMemorySize:
*result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource(); *result = process->GetUsedNonSystemUserPhysicalMemorySize();
R_SUCCEED(); R_SUCCEED();
case InfoType::IsApplication: case InfoType::IsApplication:
LOG_WARNING(Kernel_SVC, "(STUBBED) Assuming process is application"); LOG_WARNING(Kernel_SVC, "(STUBBED) Assuming process is application");
*result = true; *result = process->IsApplication();
R_SUCCEED(); R_SUCCEED();
case InfoType::FreeThreadCount: case InfoType::FreeThreadCount:
*result = process->GetFreeThreadCount(); if (KResourceLimit* resource_limit = process->GetResourceLimit();
resource_limit != nullptr) {
const auto current_value =
resource_limit->GetCurrentValue(Svc::LimitableResource::ThreadCountMax);
const auto limit_value =
resource_limit->GetLimitValue(Svc::LimitableResource::ThreadCountMax);
*result = limit_value - current_value;
} else {
*result = 0;
}
R_SUCCEED(); R_SUCCEED();
default: default:
@ -161,7 +169,7 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
case InfoType::RandomEntropy: case InfoType::RandomEntropy:
R_UNLESS(handle == 0, ResultInvalidHandle); R_UNLESS(handle == 0, ResultInvalidHandle);
R_UNLESS(info_sub_id < KProcess::RANDOM_ENTROPY_SIZE, ResultInvalidCombination); R_UNLESS(info_sub_id < 4, ResultInvalidCombination);
*result = GetCurrentProcess(system.Kernel()).GetRandomEntropy(info_sub_id); *result = GetCurrentProcess(system.Kernel()).GetRandomEntropy(info_sub_id);
R_SUCCEED(); R_SUCCEED();

View file

@ -17,7 +17,7 @@ Result ArbitrateLock(Core::System& system, Handle thread_handle, u64 address, u3
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory); R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress); R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress);
R_RETURN(GetCurrentProcess(system.Kernel()).WaitForAddress(thread_handle, address, tag)); R_RETURN(KConditionVariable::WaitForAddress(system.Kernel(), thread_handle, address, tag));
} }
/// Unlock a mutex /// Unlock a mutex
@ -28,7 +28,7 @@ Result ArbitrateUnlock(Core::System& system, u64 address) {
R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory); R_UNLESS(!IsKernelAddress(address), ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress); R_UNLESS(Common::IsAligned(address, sizeof(u32)), ResultInvalidAddress);
R_RETURN(GetCurrentProcess(system.Kernel()).SignalToAddress(address)); R_RETURN(KConditionVariable::SignalToAddress(system.Kernel(), address));
} }
Result ArbitrateLock64(Core::System& system, Handle thread_handle, uint64_t address, uint32_t tag) { Result ArbitrateLock64(Core::System& system, Handle thread_handle, uint64_t address, uint32_t tag) {

View file

@ -46,7 +46,7 @@ Result MapPhysicalMemory(Core::System& system, u64 addr, u64 size) {
KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())}; KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())};
auto& page_table{current_process->GetPageTable()}; auto& page_table{current_process->GetPageTable()};
if (current_process->GetSystemResourceSize() == 0) { if (current_process->GetTotalSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
R_THROW(ResultInvalidState); R_THROW(ResultInvalidState);
} }
@ -95,7 +95,7 @@ Result UnmapPhysicalMemory(Core::System& system, u64 addr, u64 size) {
KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())}; KProcess* const current_process{GetCurrentProcessPointer(system.Kernel())};
auto& page_table{current_process->GetPageTable()}; auto& page_table{current_process->GetPageTable()};
if (current_process->GetSystemResourceSize() == 0) { if (current_process->GetTotalSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
R_THROW(ResultInvalidState); R_THROW(ResultInvalidState);
} }

View file

@ -132,7 +132,7 @@ void SynchronizePreemptionState(Core::System& system) {
GetCurrentThread(kernel).ClearInterruptFlag(); GetCurrentThread(kernel).ClearInterruptFlag();
// Unpin the current thread. // Unpin the current thread.
cur_process->UnpinCurrentThread(core_id); cur_process->UnpinCurrentThread();
} }
} }

View file

@ -85,10 +85,6 @@ Result StartThread(Core::System& system, Handle thread_handle) {
// Try to start the thread. // Try to start the thread.
R_TRY(thread->Run()); R_TRY(thread->Run());
// If we succeeded, persist a reference to the thread.
thread->Open();
system.Kernel().RegisterInUseObject(thread.GetPointerUnsafe());
R_SUCCEED(); R_SUCCEED();
} }
@ -99,7 +95,6 @@ void ExitThread(Core::System& system) {
auto* const current_thread = GetCurrentThreadPointer(system.Kernel()); auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
system.GlobalSchedulerContext().RemoveThread(current_thread); system.GlobalSchedulerContext().RemoveThread(current_thread);
current_thread->Exit(); current_thread->Exit();
system.Kernel().UnregisterInUseObject(current_thread);
} }
/// Sleep the current thread /// Sleep the current thread
@ -260,7 +255,7 @@ Result GetThreadList(Core::System& system, s32* out_num_threads, u64 out_thread_
auto list_iter = thread_list.cbegin(); auto list_iter = thread_list.cbegin();
for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) { for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) {
memory.Write64(out_thread_ids, (*list_iter)->GetThreadId()); memory.Write64(out_thread_ids, list_iter->GetThreadId());
out_thread_ids += sizeof(u64); out_thread_ids += sizeof(u64);
} }

View file

@ -592,7 +592,7 @@ void Call(Core::System& system, u32 imm) {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
kernel.EnterSVCProfile(); kernel.EnterSVCProfile();
if (GetCurrentProcess(system.Kernel()).Is64BitProcess()) { if (GetCurrentProcess(system.Kernel()).Is64Bit()) {
Call64(system, imm); Call64(system, imm);
} else { } else {
Call32(system, imm); Call32(system, imm);

View file

@ -604,13 +604,57 @@ enum class ProcessActivity : u32 {
Paused, Paused,
}; };
enum class CreateProcessFlag : u32 {
// Is 64 bit?
Is64Bit = (1 << 0),
// What kind of address space?
AddressSpaceShift = 1,
AddressSpaceMask = (7 << AddressSpaceShift),
AddressSpace32Bit = (0 << AddressSpaceShift),
AddressSpace64BitDeprecated = (1 << AddressSpaceShift),
AddressSpace32BitWithoutAlias = (2 << AddressSpaceShift),
AddressSpace64Bit = (3 << AddressSpaceShift),
// Should JIT debug be done on crash?
EnableDebug = (1 << 4),
// Should ASLR be enabled for the process?
EnableAslr = (1 << 5),
// Is the process an application?
IsApplication = (1 << 6),
// 4.x deprecated: Should use secure memory?
DeprecatedUseSecureMemory = (1 << 7),
// 5.x+ Pool partition type.
PoolPartitionShift = 7,
PoolPartitionMask = (0xF << PoolPartitionShift),
PoolPartitionApplication = (0 << PoolPartitionShift),
PoolPartitionApplet = (1 << PoolPartitionShift),
PoolPartitionSystem = (2 << PoolPartitionShift),
PoolPartitionSystemNonSecure = (3 << PoolPartitionShift),
// 7.x+ Should memory allocation be optimized? This requires IsApplication.
OptimizeMemoryAllocation = (1 << 11),
// 11.x+ DisableDeviceAddressSpaceMerge.
DisableDeviceAddressSpaceMerge = (1 << 12),
// Mask of all flags.
All = Is64Bit | AddressSpaceMask | EnableDebug | EnableAslr | IsApplication |
PoolPartitionMask | OptimizeMemoryAllocation | DisableDeviceAddressSpaceMerge,
};
DECLARE_ENUM_FLAG_OPERATORS(CreateProcessFlag);
struct CreateProcessParameter { struct CreateProcessParameter {
std::array<char, 12> name; std::array<char, 12> name;
u32 version; u32 version;
u64 program_id; u64 program_id;
u64 code_address; u64 code_address;
s32 code_num_pages; s32 code_num_pages;
u32 flags; CreateProcessFlag flags;
Handle reslimit; Handle reslimit;
s32 system_resource_num_pages; s32 system_resource_num_pages;
}; };

View file

@ -21,10 +21,8 @@ ServiceContext::ServiceContext(Core::System& system_, std::string name_)
// Create the process. // Create the process.
process = Kernel::KProcess::Create(kernel); process = Kernel::KProcess::Create(kernel);
ASSERT(Kernel::KProcess::Initialize(process, system_, std::move(name_), ASSERT(R_SUCCEEDED(process->Initialize(Kernel::Svc::CreateProcessParameter{},
Kernel::KProcess::ProcessType::KernelInternal, kernel.GetSystemResourceLimit(), false)));
kernel.GetSystemResourceLimit())
.IsSuccess());
// Register the process. // Register the process.
Kernel::KProcess::Register(kernel, process); Kernel::KProcess::Register(kernel, process);

View file

@ -66,7 +66,6 @@ Nvnflinger::Nvnflinger(Core::System& system_, HosBinderDriverServer& hos_binder_
"ScreenComposition", "ScreenComposition",
[this](std::uintptr_t, s64 time, [this](std::uintptr_t, s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> { std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
{ const auto lock_guard = Lock(); }
vsync_signal.Set(); vsync_signal.Set();
return std::chrono::nanoseconds(GetNextTicks()); return std::chrono::nanoseconds(GetNextTicks());
}); });
@ -99,6 +98,7 @@ Nvnflinger::~Nvnflinger() {
} }
ShutdownLayers(); ShutdownLayers();
vsync_thread = {};
if (nvdrv) { if (nvdrv) {
nvdrv->Close(disp_fd); nvdrv->Close(disp_fd);
@ -106,6 +106,7 @@ Nvnflinger::~Nvnflinger() {
} }
void Nvnflinger::ShutdownLayers() { void Nvnflinger::ShutdownLayers() {
const auto lock_guard = Lock();
for (auto& display : displays) { for (auto& display : displays) {
for (size_t layer = 0; layer < display.GetNumLayers(); ++layer) { for (size_t layer = 0; layer < display.GetNumLayers(); ++layer) {
display.GetLayer(layer).Core().NotifyShutdown(); display.GetLayer(layer).Core().NotifyShutdown();
@ -229,16 +230,6 @@ VI::Layer* Nvnflinger::FindLayer(u64 display_id, u64 layer_id) {
return display->FindLayer(layer_id); return display->FindLayer(layer_id);
} }
const VI::Layer* Nvnflinger::FindLayer(u64 display_id, u64 layer_id) const {
const auto* const display = FindDisplay(display_id);
if (display == nullptr) {
return nullptr;
}
return display->FindLayer(layer_id);
}
VI::Layer* Nvnflinger::FindOrCreateLayer(u64 display_id, u64 layer_id) { VI::Layer* Nvnflinger::FindOrCreateLayer(u64 display_id, u64 layer_id) {
auto* const display = FindDisplay(display_id); auto* const display = FindDisplay(display_id);
@ -288,7 +279,6 @@ void Nvnflinger::Compose() {
auto nvdisp = nvdrv->GetDevice<Nvidia::Devices::nvdisp_disp0>(disp_fd); auto nvdisp = nvdrv->GetDevice<Nvidia::Devices::nvdisp_disp0>(disp_fd);
ASSERT(nvdisp); ASSERT(nvdisp);
guard->unlock();
Common::Rectangle<int> crop_rect{ Common::Rectangle<int> crop_rect{
static_cast<int>(buffer.crop.Left()), static_cast<int>(buffer.crop.Top()), static_cast<int>(buffer.crop.Left()), static_cast<int>(buffer.crop.Top()),
static_cast<int>(buffer.crop.Right()), static_cast<int>(buffer.crop.Bottom())}; static_cast<int>(buffer.crop.Right()), static_cast<int>(buffer.crop.Bottom())};
@ -299,7 +289,6 @@ void Nvnflinger::Compose() {
buffer.fence.fences, buffer.fence.num_fences); buffer.fence.fences, buffer.fence.num_fences);
MicroProfileFlip(); MicroProfileFlip();
guard->lock();
swap_interval = buffer.swap_interval; swap_interval = buffer.swap_interval;

View file

@ -117,9 +117,6 @@ private:
/// Finds the layer identified by the specified ID in the desired display. /// Finds the layer identified by the specified ID in the desired display.
[[nodiscard]] VI::Layer* FindLayer(u64 display_id, u64 layer_id); [[nodiscard]] VI::Layer* FindLayer(u64 display_id, u64 layer_id);
/// Finds the layer identified by the specified ID in the desired display.
[[nodiscard]] const VI::Layer* FindLayer(u64 display_id, u64 layer_id) const;
/// Finds the layer identified by the specified ID in the desired display, /// Finds the layer identified by the specified ID in the desired display,
/// or creates the layer if it is not found. /// or creates the layer if it is not found.
/// To be used when the system expects the specified ID to already exist. /// To be used when the system expects the specified ID to already exist.

View file

@ -37,7 +37,7 @@ std::optional<Kernel::KProcess*> SearchProcessList(
void GetApplicationPidGeneric(HLERequestContext& ctx, void GetApplicationPidGeneric(HLERequestContext& ctx,
const std::vector<Kernel::KProcess*>& process_list) { const std::vector<Kernel::KProcess*>& process_list) {
const auto process = SearchProcessList(process_list, [](const auto& proc) { const auto process = SearchProcessList(process_list, [](const auto& proc) {
return proc->GetProcessId() == Kernel::KProcess::ProcessIDMin; return proc->GetProcessId() == Kernel::KProcess::ProcessIdMin;
}); });
IPC::ResponseBuilder rb{ctx, 4}; IPC::ResponseBuilder rb{ctx, 4};

View file

@ -116,7 +116,7 @@ json GetProcessorStateDataAuto(Core::System& system) {
Core::ARM_Interface::ThreadContext64 context{}; Core::ARM_Interface::ThreadContext64 context{};
arm.SaveContext(context); arm.SaveContext(context);
return GetProcessorStateData(process->Is64BitProcess() ? "AArch64" : "AArch32", return GetProcessorStateData(process->Is64Bit() ? "AArch64" : "AArch32",
GetInteger(process->GetEntryPoint()), context.sp, context.pc, GetInteger(process->GetEntryPoint()), context.sp, context.pc,
context.pstate, context.cpu_registers); context.pstate, context.cpu_registers);
} }

View file

@ -127,7 +127,7 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeCallstack::GetChildren() cons
return list; return list;
} }
if (thread.GetOwnerProcess() == nullptr || !thread.GetOwnerProcess()->Is64BitProcess()) { if (thread.GetOwnerProcess() == nullptr || !thread.GetOwnerProcess()->Is64Bit()) {
return list; return list;
} }

View file

@ -2019,7 +2019,7 @@ void GMainWindow::BootGame(const QString& filename, u64 program_id, std::size_t
std::filesystem::path{Common::U16StringFromBuffer(filename.utf16(), filename.size())} std::filesystem::path{Common::U16StringFromBuffer(filename.utf16(), filename.size())}
.filename()); .filename());
} }
const bool is_64bit = system->Kernel().ApplicationProcess()->Is64BitProcess(); const bool is_64bit = system->Kernel().ApplicationProcess()->Is64Bit();
const auto instruction_set_suffix = is_64bit ? tr("(64-bit)") : tr("(32-bit)"); const auto instruction_set_suffix = is_64bit ? tr("(64-bit)") : tr("(32-bit)");
title_name = tr("%1 %2", "%1 is the title name. %2 indicates if the title is 64-bit or 32-bit") title_name = tr("%1 %2", "%1 is the title name. %2 indicates if the title is 64-bit or 32-bit")
.arg(QString::fromStdString(title_name), instruction_set_suffix) .arg(QString::fromStdString(title_name), instruction_set_suffix)