early-access version 1954

This commit is contained in:
pineappleEA 2021-08-01 08:55:41 +02:00
parent 60cb38863d
commit 57da374c03
10 changed files with 256 additions and 422 deletions

View file

@ -25,7 +25,7 @@ option(YUZU_USE_BUNDLED_BOOST "Download bundled Boost" OFF)
option(YUZU_USE_BUNDLED_LIBUSB "Compile bundled libusb" OFF) option(YUZU_USE_BUNDLED_LIBUSB "Compile bundled libusb" OFF)
CMAKE_DEPENDENT_OPTION(YUZU_USE_BUNDLED_FFMPEG "Download/Build bundled FFmpeg" ON "WIN32" OFF) option(YUZU_USE_BUNDLED_FFMPEG "Download/Build bundled FFmpeg" "${WIN32}")
option(YUZU_USE_QT_WEB_ENGINE "Use QtWebEngine for web applet implementation" OFF) option(YUZU_USE_QT_WEB_ENGINE "Use QtWebEngine for web applet implementation" OFF)
@ -604,6 +604,8 @@ if (YUZU_USE_BUNDLED_FFMPEG)
--disable-vdpau --disable-vdpau
--enable-decoder=h264 --enable-decoder=h264
--enable-decoder=vp9 --enable-decoder=vp9
--cc="${CMAKE_C_COMPILER}"
--cxx="${CMAKE_CXX_COMPILER}"
WORKING_DIRECTORY WORKING_DIRECTORY
${FFmpeg_BUILD_DIR} ${FFmpeg_BUILD_DIR}
) )

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 1953. This is the source code for early-access 1954.
## Legal Notice ## Legal Notice

View file

@ -67,6 +67,8 @@ if (MINGW OR (${CMAKE_SYSTEM_NAME} MATCHES "Linux") OR APPLE)
"${LIBUSB_MAKEFILE}" "${LIBUSB_MAKEFILE}"
COMMAND COMMAND
env env
CC="${CMAKE_C_COMPILER}"
CXX="${CMAKE_CXX_COMPILER}"
CFLAGS="${LIBUSB_CFLAGS}" CFLAGS="${LIBUSB_CFLAGS}"
sh "${LIBUSB_CONFIGURE}" sh "${LIBUSB_CONFIGURE}"
${LIBUSB_CONFIGURE_ARGS} ${LIBUSB_CONFIGURE_ARGS}

View file

@ -10,33 +10,27 @@
#define END_PUSH_CONSTANTS }; #define END_PUSH_CONSTANTS };
#define UNIFORM(n) #define UNIFORM(n)
#define BINDING_INPUT_BUFFER 0 #define BINDING_INPUT_BUFFER 0
#define BINDING_ENC_BUFFER 1 #define BINDING_OUTPUT_IMAGE 1
#define BINDING_SWIZZLE_BUFFER 2
#define BINDING_OUTPUT_IMAGE 3
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv #else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BEGIN_PUSH_CONSTANTS #define BEGIN_PUSH_CONSTANTS
#define END_PUSH_CONSTANTS #define END_PUSH_CONSTANTS
#define UNIFORM(n) layout(location = n) uniform #define UNIFORM(n) layout(location = n) uniform
#define BINDING_SWIZZLE_BUFFER 0 #define BINDING_INPUT_BUFFER 0
#define BINDING_INPUT_BUFFER 1
#define BINDING_ENC_BUFFER 2
#define BINDING_OUTPUT_IMAGE 0 #define BINDING_OUTPUT_IMAGE 0
#endif #endif
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in; layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
BEGIN_PUSH_CONSTANTS BEGIN_PUSH_CONSTANTS
UNIFORM(1) uvec2 block_dims; UNIFORM(1) uvec2 block_dims;
UNIFORM(2) uint layer_stride;
UNIFORM(2) uint bytes_per_block_log2; UNIFORM(3) uint block_size;
UNIFORM(3) uint layer_stride; UNIFORM(4) uint x_shift;
UNIFORM(4) uint block_size; UNIFORM(5) uint block_height;
UNIFORM(5) uint x_shift; UNIFORM(6) uint block_height_mask;
UNIFORM(6) uint block_height;
UNIFORM(7) uint block_height_mask;
END_PUSH_CONSTANTS END_PUSH_CONSTANTS
struct EncodingData { struct EncodingData {
@ -55,45 +49,35 @@ struct TexelWeightParams {
bool void_extent_hdr; bool void_extent_hdr;
}; };
// Swizzle data
layout(binding = BINDING_SWIZZLE_BUFFER, std430) readonly buffer SwizzleTable {
uint swizzle_table[];
};
layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 { layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 {
uint astc_data[]; uvec4 astc_data[];
};
// ASTC Encodings data
layout(binding = BINDING_ENC_BUFFER, std430) readonly buffer EncodingsValues {
EncodingData encoding_values[];
}; };
layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image; layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image;
const uint GOB_SIZE_X = 64;
const uint GOB_SIZE_Y = 8;
const uint GOB_SIZE_Z = 1;
const uint GOB_SIZE = GOB_SIZE_X * GOB_SIZE_Y * GOB_SIZE_Z;
const uint GOB_SIZE_X_SHIFT = 6; const uint GOB_SIZE_X_SHIFT = 6;
const uint GOB_SIZE_Y_SHIFT = 3; const uint GOB_SIZE_Y_SHIFT = 3;
const uint GOB_SIZE_Z_SHIFT = 0; const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT;
const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_SHIFT;
const uvec2 SWIZZLE_MASK = uvec2(GOB_SIZE_X - 1, GOB_SIZE_Y - 1); const uint BYTES_PER_BLOCK_LOG2 = 4;
const int BLOCK_SIZE_IN_BYTES = 16;
const int BLOCK_INFO_ERROR = 0;
const int BLOCK_INFO_VOID_EXTENT_HDR = 1;
const int BLOCK_INFO_VOID_EXTENT_LDR = 2;
const int BLOCK_INFO_NORMAL = 3;
const int JUST_BITS = 0; const int JUST_BITS = 0;
const int QUINT = 1; const int QUINT = 1;
const int TRIT = 2; const int TRIT = 2;
// ASTC Encodings data, sorted in ascending order based on their BitLength value
// (see GetBitLength() function)
EncodingData encoding_values[22] = EncodingData[](
EncodingData(JUST_BITS, 0, 0, 0), EncodingData(JUST_BITS, 1, 0, 0), EncodingData(TRIT, 0, 0, 0),
EncodingData(JUST_BITS, 2, 0, 0), EncodingData(QUINT, 0, 0, 0), EncodingData(TRIT, 1, 0, 0),
EncodingData(JUST_BITS, 3, 0, 0), EncodingData(QUINT, 1, 0, 0), EncodingData(TRIT, 2, 0, 0),
EncodingData(JUST_BITS, 4, 0, 0), EncodingData(QUINT, 2, 0, 0), EncodingData(TRIT, 3, 0, 0),
EncodingData(JUST_BITS, 5, 0, 0), EncodingData(QUINT, 3, 0, 0), EncodingData(TRIT, 4, 0, 0),
EncodingData(JUST_BITS, 6, 0, 0), EncodingData(QUINT, 4, 0, 0), EncodingData(TRIT, 5, 0, 0),
EncodingData(JUST_BITS, 7, 0, 0), EncodingData(QUINT, 5, 0, 0), EncodingData(TRIT, 6, 0, 0),
EncodingData(JUST_BITS, 8, 0, 0)
);
// The following constants are expanded variants of the Replicate() // The following constants are expanded variants of the Replicate()
// function calls corresponding to the following arguments: // function calls corresponding to the following arguments:
// value: index into the generated table // value: index into the generated table
@ -135,44 +119,37 @@ const uint REPLICATE_7_BIT_TO_8_TABLE[128] =
// Input ASTC texture globals // Input ASTC texture globals
uint current_index = 0; uint current_index = 0;
int bitsread = 0; int bitsread = 0;
uint total_bitsread = 0; int total_bitsread = 0;
uint local_buff[16]; uvec4 local_buff;
// Color data globals // Color data globals
uint color_endpoint_data[16]; uvec4 color_endpoint_data;
int color_bitsread = 0; int color_bitsread = 0;
uint total_color_bitsread = 0;
int color_index = 0;
// Four values, two endpoints, four maximum paritions // Four values, two endpoints, four maximum paritions
uint color_values[32]; uint color_values[32];
int colvals_index = 0; int colvals_index = 0;
// Weight data globals // Weight data globals
uint texel_weight_data[16]; uvec4 texel_weight_data;
int texel_bitsread = 0; int texel_bitsread = 0;
uint total_texel_bitsread = 0;
int texel_index = 0;
bool texel_flag = false; bool texel_flag = false;
// Global "vectors" to be pushed into when decoding // Global "vectors" to be pushed into when decoding
EncodingData result_vector[100]; EncodingData result_vector[144];
int result_index = 0; int result_index = 0;
EncodingData texel_vector[100]; EncodingData texel_vector[144];
int texel_vector_index = 0; int texel_vector_index = 0;
uint unquantized_texel_weights[2][144]; uint unquantized_texel_weights[2][144];
uint SwizzleOffset(uvec2 pos) { uint SwizzleOffset(uvec2 pos) {
pos = pos & SWIZZLE_MASK; uint x = pos.x;
return swizzle_table[pos.y * 64 + pos.x]; uint y = pos.y;
} return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
(y % 2) * 16 + (x % 16);
uint ReadTexel(uint offset) {
// extract the 8-bit value from the 32-bit packed data.
return bitfieldExtract(astc_data[offset / 4], int((offset * 8) & 24), 8);
} }
// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] // Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
@ -278,14 +255,10 @@ uint Hash52(uint p) {
return p; return p;
} }
uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bool small_block) { uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) {
if (partition_count == 1) {
return 0;
}
if (small_block) { if (small_block) {
x <<= 1; x <<= 1;
y <<= 1; y <<= 1;
z <<= 1;
} }
seed += (partition_count - 1) * 1024; seed += (partition_count - 1) * 1024;
@ -299,10 +272,6 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
uint seed6 = uint((rnum >> 20) & 0xF); uint seed6 = uint((rnum >> 20) & 0xF);
uint seed7 = uint((rnum >> 24) & 0xF); uint seed7 = uint((rnum >> 24) & 0xF);
uint seed8 = uint((rnum >> 28) & 0xF); uint seed8 = uint((rnum >> 28) & 0xF);
uint seed9 = uint((rnum >> 18) & 0xF);
uint seed10 = uint((rnum >> 22) & 0xF);
uint seed11 = uint((rnum >> 26) & 0xF);
uint seed12 = uint(((rnum >> 30) | (rnum << 2)) & 0xF);
seed1 = (seed1 * seed1); seed1 = (seed1 * seed1);
seed2 = (seed2 * seed2); seed2 = (seed2 * seed2);
@ -312,12 +281,8 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
seed6 = (seed6 * seed6); seed6 = (seed6 * seed6);
seed7 = (seed7 * seed7); seed7 = (seed7 * seed7);
seed8 = (seed8 * seed8); seed8 = (seed8 * seed8);
seed9 = (seed9 * seed9);
seed10 = (seed10 * seed10);
seed11 = (seed11 * seed11);
seed12 = (seed12 * seed12);
int sh1, sh2, sh3; uint sh1, sh2;
if ((seed & 1) > 0) { if ((seed & 1) > 0) {
sh1 = (seed & 2) > 0 ? 4 : 5; sh1 = (seed & 2) > 0 ? 4 : 5;
sh2 = (partition_count == 3) ? 6 : 5; sh2 = (partition_count == 3) ? 6 : 5;
@ -325,25 +290,19 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
sh1 = (partition_count == 3) ? 6 : 5; sh1 = (partition_count == 3) ? 6 : 5;
sh2 = (seed & 2) > 0 ? 4 : 5; sh2 = (seed & 2) > 0 ? 4 : 5;
} }
sh3 = (seed & 0x10) > 0 ? sh1 : sh2; seed1 >>= sh1;
seed2 >>= sh2;
seed3 >>= sh1;
seed4 >>= sh2;
seed5 >>= sh1;
seed6 >>= sh2;
seed7 >>= sh1;
seed8 >>= sh2;
seed1 = (seed1 >> sh1); uint a = seed1 * x + seed2 * y + (rnum >> 14);
seed2 = (seed2 >> sh2); uint b = seed3 * x + seed4 * y + (rnum >> 10);
seed3 = (seed3 >> sh1); uint c = seed5 * x + seed6 * y + (rnum >> 6);
seed4 = (seed4 >> sh2); uint d = seed7 * x + seed8 * y + (rnum >> 2);
seed5 = (seed5 >> sh1);
seed6 = (seed6 >> sh2);
seed7 = (seed7 >> sh1);
seed8 = (seed8 >> sh2);
seed9 = (seed9 >> sh3);
seed10 = (seed10 >> sh3);
seed11 = (seed11 >> sh3);
seed12 = (seed12 >> sh3);
uint a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
uint b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
uint c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
uint d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
a &= 0x3F; a &= 0x3F;
b &= 0x3F; b &= 0x3F;
@ -368,58 +327,37 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
} }
} }
uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) { uint ExtractBits(uvec4 payload, int offset, int bits) {
return SelectPartition(seed, x, y, 0, partition_count, small_block); if (bits <= 0) {
}
uint ReadBit() {
if (current_index >= local_buff.length()) {
return 0; return 0;
} }
uint bit = bitfieldExtract(local_buff[current_index], bitsread, 1); int last_offset = offset + bits - 1;
++bitsread; int shifted_offset = offset >> 5;
++total_bitsread; if ((last_offset >> 5) == shifted_offset) {
if (bitsread == 8) { return bitfieldExtract(payload[shifted_offset], offset & 31, bits);
++current_index;
bitsread = 0;
} }
return bit; int first_bits = 32 - (offset & 31);
int result_first = int(bitfieldExtract(payload[shifted_offset], offset & 31, first_bits));
int result_second = int(bitfieldExtract(payload[shifted_offset + 1], 0, bits - first_bits));
return result_first | (result_second << first_bits);
} }
uint StreamBits(uint num_bits) { uint StreamBits(uint num_bits) {
uint ret = 0; int int_bits = int(num_bits);
for (uint i = 0; i < num_bits; i++) { uint ret = ExtractBits(local_buff, total_bitsread, int_bits);
ret |= ((ReadBit() & 1) << i); total_bitsread += int_bits;
}
return ret; return ret;
} }
uint ReadColorBit() {
uint bit = 0;
if (texel_flag) {
bit = bitfieldExtract(texel_weight_data[texel_index], texel_bitsread, 1);
++texel_bitsread;
++total_texel_bitsread;
if (texel_bitsread == 8) {
++texel_index;
texel_bitsread = 0;
}
} else {
bit = bitfieldExtract(color_endpoint_data[color_index], color_bitsread, 1);
++color_bitsread;
++total_color_bitsread;
if (color_bitsread == 8) {
++color_index;
color_bitsread = 0;
}
}
return bit;
}
uint StreamColorBits(uint num_bits) { uint StreamColorBits(uint num_bits) {
uint ret = 0; uint ret = 0;
for (uint i = 0; i < num_bits; i++) { int int_bits = int(num_bits);
ret |= ((ReadColorBit() & 1) << i); if (texel_flag) {
ret = ExtractBits(texel_weight_data, texel_bitsread, int_bits);
texel_bitsread += int_bits;
} else {
ret = ExtractBits(color_endpoint_data, color_bitsread, int_bits);
color_bitsread += int_bits;
} }
return ret; return ret;
} }
@ -596,22 +534,16 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
for (uint i = 0; i < num_partitions; i++) { for (uint i = 0; i < num_partitions; i++) {
num_values += ((modes[i] >> 2) + 1) << 1; num_values += ((modes[i] >> 2) + 1) << 1;
} }
int range = 256; // Find the largest encoding that's within color_data_bits
while (--range > 0) { // TODO(ameerj): profile with binary search
EncodingData val = encoding_values[range]; int range = 0;
while (++range < encoding_values.length()) {
uint bit_length = GetBitLength(num_values, range); uint bit_length = GetBitLength(num_values, range);
if (bit_length <= color_data_bits) { if (bit_length > color_data_bits) {
while (--range > 0) {
EncodingData newval = encoding_values[range];
if (newval.encoding != val.encoding && newval.num_bits != val.num_bits) {
break; break;
} }
} }
++range; DecodeIntegerSequence(range - 1, num_values);
break;
}
}
DecodeIntegerSequence(range, num_values);
uint out_index = 0; uint out_index = 0;
for (int itr = 0; itr < result_index; ++itr) { for (int itr = 0; itr < result_index; ++itr) {
if (out_index >= num_values) { if (out_index >= num_values) {
@ -1028,7 +960,7 @@ int FindLayout(uint mode) {
return 5; return 5;
} }
TexelWeightParams DecodeBlockInfo(uint block_index) { TexelWeightParams DecodeBlockInfo() {
TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false); TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false);
uint mode = StreamBits(11); uint mode = StreamBits(11);
if ((mode & 0x1ff) == 0x1fc) { if ((mode & 0x1ff) == 0x1fc) {
@ -1110,10 +1042,10 @@ TexelWeightParams DecodeBlockInfo(uint block_index) {
} }
weight_index -= 2; weight_index -= 2;
if ((mode_layout != 9) && ((mode & 0x200) != 0)) { if ((mode_layout != 9) && ((mode & 0x200) != 0)) {
const int max_weights[6] = int[6](9, 11, 15, 19, 23, 31); const int max_weights[6] = int[6](7, 8, 9, 10, 11, 12);
params.max_weight = max_weights[weight_index]; params.max_weight = max_weights[weight_index];
} else { } else {
const int max_weights[6] = int[6](1, 2, 3, 4, 5, 7); const int max_weights[6] = int[6](1, 2, 3, 4, 5, 6);
params.max_weight = max_weights[weight_index]; params.max_weight = max_weights[weight_index];
} }
return params; return params;
@ -1144,8 +1076,8 @@ void FillVoidExtentLDR(ivec3 coord) {
} }
} }
void DecompressBlock(ivec3 coord, uint block_index) { void DecompressBlock(ivec3 coord) {
TexelWeightParams params = DecodeBlockInfo(block_index); TexelWeightParams params = DecodeBlockInfo();
if (params.error_state) { if (params.error_state) {
FillError(coord); FillError(coord);
return; return;
@ -1212,7 +1144,7 @@ void DecompressBlock(ivec3 coord, uint block_index) {
// Read color data... // Read color data...
uint color_data_bits = remaining_bits; uint color_data_bits = remaining_bits;
while (remaining_bits > 0) { while (remaining_bits > 0) {
int nb = int(min(remaining_bits, 8U)); int nb = int(min(remaining_bits, 32U));
uint b = StreamBits(nb); uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb)); color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
++ced_pointer; ++ced_pointer;
@ -1254,25 +1186,20 @@ void DecompressBlock(ivec3 coord, uint block_index) {
ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]); ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]);
} }
for (uint i = 0; i < 16; i++) { texel_weight_data = local_buff;
texel_weight_data[i] = local_buff[i]; texel_weight_data = bitfieldReverse(texel_weight_data).wzyx;
}
for (uint i = 0; i < 8; i++) {
#define REVERSE_BYTE(b) ((b * 0x0802U & 0x22110U) | (b * 0x8020U & 0x88440U)) * 0x10101U >> 16
uint a = REVERSE_BYTE(texel_weight_data[i]);
uint b = REVERSE_BYTE(texel_weight_data[15 - i]);
#undef REVERSE_BYTE
texel_weight_data[i] = uint(bitfieldExtract(b, 0, 8));
texel_weight_data[15 - i] = uint(bitfieldExtract(a, 0, 8));
}
uint clear_byte_start = uint clear_byte_start =
(GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1; (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1;
texel_weight_data[clear_byte_start - 1] =
texel_weight_data[clear_byte_start - 1] & uint byte_insert = ExtractBits(texel_weight_data, int(clear_byte_start - 1) * 8, 8) &
uint( uint(
((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1)); ((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1));
for (uint i = 0; i < 16 - clear_byte_start; i++) { uint vec_index = (clear_byte_start - 1) >> 2;
texel_weight_data[clear_byte_start + i] = 0U; texel_weight_data[vec_index] =
bitfieldInsert(texel_weight_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8);
for (uint i = clear_byte_start; i < 16; ++i) {
uint idx = i >> 2;
texel_weight_data[idx] = bitfieldInsert(texel_weight_data[idx], 0, int(i % 4) * 8, 8);
} }
texel_flag = true; // use texel "vector" and bit stream in integer decoding texel_flag = true; // use texel "vector" and bit stream in integer decoding
DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane)); DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane));
@ -1281,8 +1208,11 @@ void DecompressBlock(ivec3 coord, uint block_index) {
for (uint j = 0; j < block_dims.y; j++) { for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) { for (uint i = 0; i < block_dims.x; i++) {
uint local_partition = Select2DPartition(partition_index, i, j, num_partitions, uint local_partition = 0;
if (num_partitions > 1) {
local_partition = Select2DPartition(partition_index, i, j, num_partitions,
(block_dims.y * block_dims.x) < 32); (block_dims.y * block_dims.x) < 32);
}
vec4 p; vec4 p;
uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]); uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]);
uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]); uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]);
@ -1303,7 +1233,7 @@ void DecompressBlock(ivec3 coord, uint block_index) {
void main() { void main() {
uvec3 pos = gl_GlobalInvocationID; uvec3 pos = gl_GlobalInvocationID;
pos.x <<= bytes_per_block_log2; pos.x <<= BYTES_PER_BLOCK_LOG2;
// Read as soon as possible due to its latency // Read as soon as possible due to its latency
const uint swizzle = SwizzleOffset(pos.xy); const uint swizzle = SwizzleOffset(pos.xy);
@ -1321,13 +1251,8 @@ void main() {
if (any(greaterThanEqual(coord, imageSize(dest_image)))) { if (any(greaterThanEqual(coord, imageSize(dest_image)))) {
return; return;
} }
uint block_index =
pos.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y + pos.y * gl_WorkGroupSize.x + pos.x;
current_index = 0; current_index = 0;
bitsread = 0; bitsread = 0;
for (int i = 0; i < 16; i++) { local_buff = astc_data[offset / 16];
local_buff[i] = ReadTexel(offset + i); DecompressBlock(coord);
}
DecompressBlock(coord, block_index);
} }

View file

@ -60,19 +60,14 @@ UtilShaders::UtilShaders(ProgramManager& program_manager_)
copy_bc4_program(MakeProgram(OPENGL_COPY_BC4_COMP)) { copy_bc4_program(MakeProgram(OPENGL_COPY_BC4_COMP)) {
const auto swizzle_table = Tegra::Texture::MakeSwizzleTable(); const auto swizzle_table = Tegra::Texture::MakeSwizzleTable();
swizzle_table_buffer.Create(); swizzle_table_buffer.Create();
astc_buffer.Create();
glNamedBufferStorage(swizzle_table_buffer.handle, sizeof(swizzle_table), &swizzle_table, 0); glNamedBufferStorage(swizzle_table_buffer.handle, sizeof(swizzle_table), &swizzle_table, 0);
glNamedBufferStorage(astc_buffer.handle, sizeof(ASTC_ENCODINGS_VALUES), &ASTC_ENCODINGS_VALUES,
0);
} }
UtilShaders::~UtilShaders() = default; UtilShaders::~UtilShaders() = default;
void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map, void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map,
std::span<const VideoCommon::SwizzleParameters> swizzles) { std::span<const VideoCommon::SwizzleParameters> swizzles) {
static constexpr GLuint BINDING_SWIZZLE_BUFFER = 0; static constexpr GLuint BINDING_INPUT_BUFFER = 0;
static constexpr GLuint BINDING_INPUT_BUFFER = 1;
static constexpr GLuint BINDING_ENC_BUFFER = 2;
static constexpr GLuint BINDING_OUTPUT_IMAGE = 0; static constexpr GLuint BINDING_OUTPUT_IMAGE = 0;
const Extent2D tile_size{ const Extent2D tile_size{
@ -80,34 +75,32 @@ void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map,
.height = VideoCore::Surface::DefaultBlockHeight(image.info.format), .height = VideoCore::Surface::DefaultBlockHeight(image.info.format),
}; };
program_manager.BindComputeProgram(astc_decoder_program.handle); program_manager.BindComputeProgram(astc_decoder_program.handle);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_ENC_BUFFER, astc_buffer.handle);
glFlushMappedNamedBufferRange(map.buffer, map.offset, image.guest_size_bytes); glFlushMappedNamedBufferRange(map.buffer, map.offset, image.guest_size_bytes);
glUniform2ui(1, tile_size.width, tile_size.height); glUniform2ui(1, tile_size.width, tile_size.height);
// Ensure buffer data is valid before dispatching // Ensure buffer data is valid before dispatching
glFlush(); glFlush();
for (const SwizzleParameters& swizzle : swizzles) { for (const SwizzleParameters& swizzle : swizzles) {
const size_t input_offset = swizzle.buffer_offset + map.offset; const size_t input_offset = swizzle.buffer_offset + map.offset;
const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U); const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 8U);
const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U); const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 8U);
const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info); const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0})); ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0})); ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
ASSERT(params.bytes_per_block_log2 == 4);
glUniform1ui(2, params.bytes_per_block_log2); glUniform1ui(2, params.layer_stride);
glUniform1ui(3, params.layer_stride); glUniform1ui(3, params.block_size);
glUniform1ui(4, params.block_size); glUniform1ui(4, params.x_shift);
glUniform1ui(5, params.x_shift); glUniform1ui(5, params.block_height);
glUniform1ui(6, params.block_height); glUniform1ui(6, params.block_height_mask);
glUniform1ui(7, params.block_height_mask);
glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0,
GL_WRITE_ONLY, GL_RGBA8);
// ASTC texture data // ASTC texture data
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset, glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
image.guest_size_bytes - swizzle.buffer_offset); image.guest_size_bytes - swizzle.buffer_offset);
glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0,
GL_WRITE_ONLY, GL_RGBA8);
glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers); glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers);
} }

View file

@ -62,7 +62,6 @@ private:
ProgramManager& program_manager; ProgramManager& program_manager;
OGLBuffer swizzle_table_buffer; OGLBuffer swizzle_table_buffer;
OGLBuffer astc_buffer;
OGLProgram astc_decoder_program; OGLProgram astc_decoder_program;
OGLProgram block_linear_unswizzle_2d_program; OGLProgram block_linear_unswizzle_2d_program;

View file

@ -30,16 +30,12 @@
namespace Vulkan { namespace Vulkan {
using Tegra::Texture::SWIZZLE_TABLE; using Tegra::Texture::SWIZZLE_TABLE;
using Tegra::Texture::ASTC::ASTC_ENCODINGS_VALUES;
using namespace Tegra::Texture::ASTC;
namespace { namespace {
constexpr u32 ASTC_BINDING_INPUT_BUFFER = 0; constexpr u32 ASTC_BINDING_INPUT_BUFFER = 0;
constexpr u32 ASTC_BINDING_ENC_BUFFER = 1; constexpr u32 ASTC_BINDING_OUTPUT_IMAGE = 1;
constexpr u32 ASTC_BINDING_SWIZZLE_BUFFER = 2; constexpr size_t ASTC_NUM_BINDINGS = 2;
constexpr u32 ASTC_BINDING_OUTPUT_IMAGE = 3;
constexpr size_t ASTC_NUM_BINDINGS = 4;
template <size_t size> template <size_t size>
inline constexpr VkPushConstantRange COMPUTE_PUSH_CONSTANT_RANGE{ inline constexpr VkPushConstantRange COMPUTE_PUSH_CONSTANT_RANGE{
@ -75,7 +71,7 @@ constexpr DescriptorBankInfo INPUT_OUTPUT_BANK_INFO{
.score = 2, .score = 2,
}; };
constexpr std::array<VkDescriptorSetLayoutBinding, 4> ASTC_DESCRIPTOR_SET_BINDINGS{{ constexpr std::array<VkDescriptorSetLayoutBinding, ASTC_NUM_BINDINGS> ASTC_DESCRIPTOR_SET_BINDINGS{{
{ {
.binding = ASTC_BINDING_INPUT_BUFFER, .binding = ASTC_BINDING_INPUT_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
@ -83,20 +79,6 @@ constexpr std::array<VkDescriptorSetLayoutBinding, 4> ASTC_DESCRIPTOR_SET_BINDIN
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr, .pImmutableSamplers = nullptr,
}, },
{
.binding = ASTC_BINDING_ENC_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
.binding = ASTC_BINDING_SWIZZLE_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{ {
.binding = ASTC_BINDING_OUTPUT_IMAGE, .binding = ASTC_BINDING_OUTPUT_IMAGE,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
@ -108,12 +90,12 @@ constexpr std::array<VkDescriptorSetLayoutBinding, 4> ASTC_DESCRIPTOR_SET_BINDIN
constexpr DescriptorBankInfo ASTC_BANK_INFO{ constexpr DescriptorBankInfo ASTC_BANK_INFO{
.uniform_buffers = 0, .uniform_buffers = 0,
.storage_buffers = 3, .storage_buffers = 1,
.texture_buffers = 0, .texture_buffers = 0,
.image_buffers = 0, .image_buffers = 0,
.textures = 0, .textures = 0,
.images = 1, .images = 1,
.score = 4, .score = 2,
}; };
constexpr VkDescriptorUpdateTemplateEntryKHR INPUT_OUTPUT_DESCRIPTOR_UPDATE_TEMPLATE{ constexpr VkDescriptorUpdateTemplateEntryKHR INPUT_OUTPUT_DESCRIPTOR_UPDATE_TEMPLATE{
@ -135,22 +117,6 @@ constexpr std::array<VkDescriptorUpdateTemplateEntryKHR, ASTC_NUM_BINDINGS>
.offset = ASTC_BINDING_INPUT_BUFFER * sizeof(DescriptorUpdateEntry), .offset = ASTC_BINDING_INPUT_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry), .stride = sizeof(DescriptorUpdateEntry),
}, },
{
.dstBinding = ASTC_BINDING_ENC_BUFFER,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.offset = ASTC_BINDING_ENC_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
.dstBinding = ASTC_BINDING_SWIZZLE_BUFFER,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.offset = ASTC_BINDING_SWIZZLE_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{ {
.dstBinding = ASTC_BINDING_OUTPUT_IMAGE, .dstBinding = ASTC_BINDING_OUTPUT_IMAGE,
.dstArrayElement = 0, .dstArrayElement = 0,
@ -163,7 +129,6 @@ constexpr std::array<VkDescriptorUpdateTemplateEntryKHR, ASTC_NUM_BINDINGS>
struct AstcPushConstants { struct AstcPushConstants {
std::array<u32, 2> blocks_dims; std::array<u32, 2> blocks_dims;
u32 bytes_per_block_log2;
u32 layer_stride; u32 layer_stride;
u32 block_size; u32 block_size;
u32 x_shift; u32 x_shift;
@ -354,46 +319,6 @@ ASTCDecoderPass::ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_,
ASTCDecoderPass::~ASTCDecoderPass() = default; ASTCDecoderPass::~ASTCDecoderPass() = default;
void ASTCDecoderPass::MakeDataBuffer() {
constexpr size_t TOTAL_BUFFER_SIZE = sizeof(ASTC_ENCODINGS_VALUES) + sizeof(SWIZZLE_TABLE);
data_buffer = device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = TOTAL_BUFFER_SIZE,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
});
data_buffer_commit = memory_allocator.Commit(data_buffer, MemoryUsage::Upload);
const auto staging_ref = staging_buffer_pool.Request(TOTAL_BUFFER_SIZE, MemoryUsage::Upload);
std::memcpy(staging_ref.mapped_span.data(), &ASTC_ENCODINGS_VALUES,
sizeof(ASTC_ENCODINGS_VALUES));
// Tack on the swizzle table at the end of the buffer
std::memcpy(staging_ref.mapped_span.data() + sizeof(ASTC_ENCODINGS_VALUES), &SWIZZLE_TABLE,
sizeof(SWIZZLE_TABLE));
scheduler.Record([src = staging_ref.buffer, offset = staging_ref.offset, dst = *data_buffer,
TOTAL_BUFFER_SIZE](vk::CommandBuffer cmdbuf) {
static constexpr VkMemoryBarrier write_barrier{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
};
const VkBufferCopy copy{
.srcOffset = offset,
.dstOffset = 0,
.size = TOTAL_BUFFER_SIZE,
};
cmdbuf.CopyBuffer(src, dst, copy);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, write_barrier);
});
}
void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map, void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
std::span<const VideoCommon::SwizzleParameters> swizzles) { std::span<const VideoCommon::SwizzleParameters> swizzles) {
using namespace VideoCommon::Accelerated; using namespace VideoCommon::Accelerated;
@ -402,9 +327,6 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
VideoCore::Surface::DefaultBlockHeight(image.info.format), VideoCore::Surface::DefaultBlockHeight(image.info.format),
}; };
scheduler.RequestOutsideRenderPassOperationContext(); scheduler.RequestOutsideRenderPassOperationContext();
if (!data_buffer) {
MakeDataBuffer();
}
const VkPipeline vk_pipeline = *pipeline; const VkPipeline vk_pipeline = *pipeline;
const VkImageAspectFlags aspect_mask = image.AspectMask(); const VkImageAspectFlags aspect_mask = image.AspectMask();
const VkImage vk_image = image.Handle(); const VkImage vk_image = image.Handle();
@ -436,16 +358,13 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
}); });
for (const VideoCommon::SwizzleParameters& swizzle : swizzles) { for (const VideoCommon::SwizzleParameters& swizzle : swizzles) {
const size_t input_offset = swizzle.buffer_offset + map.offset; const size_t input_offset = swizzle.buffer_offset + map.offset;
const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U); const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 8U);
const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U); const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 8U);
const u32 num_dispatches_z = image.info.resources.layers; const u32 num_dispatches_z = image.info.resources.layers;
update_descriptor_queue.Acquire(); update_descriptor_queue.Acquire();
update_descriptor_queue.AddBuffer(map.buffer, input_offset, update_descriptor_queue.AddBuffer(map.buffer, input_offset,
image.guest_size_bytes - swizzle.buffer_offset); image.guest_size_bytes - swizzle.buffer_offset);
update_descriptor_queue.AddBuffer(*data_buffer, 0, sizeof(ASTC_ENCODINGS_VALUES));
update_descriptor_queue.AddBuffer(*data_buffer, sizeof(ASTC_ENCODINGS_VALUES),
sizeof(SWIZZLE_TABLE));
update_descriptor_queue.AddImage(image.StorageImageView(swizzle.level)); update_descriptor_queue.AddImage(image.StorageImageView(swizzle.level));
const void* const descriptor_data{update_descriptor_queue.UpdateData()}; const void* const descriptor_data{update_descriptor_queue.UpdateData()};
@ -453,11 +372,11 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info); const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0})); ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0})); ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
ASSERT(params.bytes_per_block_log2 == 4);
scheduler.Record([this, num_dispatches_x, num_dispatches_y, num_dispatches_z, block_dims, scheduler.Record([this, num_dispatches_x, num_dispatches_y, num_dispatches_z, block_dims,
params, descriptor_data](vk::CommandBuffer cmdbuf) { params, descriptor_data](vk::CommandBuffer cmdbuf) {
const AstcPushConstants uniforms{ const AstcPushConstants uniforms{
.blocks_dims = block_dims, .blocks_dims = block_dims,
.bytes_per_block_log2 = params.bytes_per_block_log2,
.layer_stride = params.layer_stride, .layer_stride = params.layer_stride,
.block_size = params.block_size, .block_size = params.block_size,
.x_shift = params.x_shift, .x_shift = params.x_shift,

View file

@ -96,15 +96,10 @@ public:
std::span<const VideoCommon::SwizzleParameters> swizzles); std::span<const VideoCommon::SwizzleParameters> swizzles);
private: private:
void MakeDataBuffer();
VKScheduler& scheduler; VKScheduler& scheduler;
StagingBufferPool& staging_buffer_pool; StagingBufferPool& staging_buffer_pool;
VKUpdateDescriptorQueue& update_descriptor_queue; VKUpdateDescriptorQueue& update_descriptor_queue;
MemoryAllocator& memory_allocator; MemoryAllocator& memory_allocator;
vk::Buffer data_buffer;
MemoryCommit data_buffer_commit;
}; };
} // namespace Vulkan } // namespace Vulkan

View file

@ -151,6 +151,76 @@ private:
const IntType& m_Bits; const IntType& m_Bits;
}; };
enum class IntegerEncoding { JustBits, Quint, Trit };
struct IntegerEncodedValue {
constexpr IntegerEncodedValue() = default;
constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
: encoding{encoding_}, num_bits{num_bits_} {}
constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
return encoding == other.encoding && num_bits == other.num_bits;
}
// Returns the number of bits required to encode num_vals values.
u32 GetBitLength(u32 num_vals) const {
u32 total_bits = num_bits * num_vals;
if (encoding == IntegerEncoding::Trit) {
total_bits += (num_vals * 8 + 4) / 5;
} else if (encoding == IntegerEncoding::Quint) {
total_bits += (num_vals * 7 + 2) / 3;
}
return total_bits;
}
IntegerEncoding encoding{};
u32 num_bits = 0;
u32 bit_value = 0;
union {
u32 quint_value = 0;
u32 trit_value;
};
};
// Returns a new instance of this struct that corresponds to the
// can take no more than mav_value values
static constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
while (mav_value > 0) {
u32 check = mav_value + 1;
// Is mav_value a power of two?
if (!(check & (check - 1))) {
return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
}
// Is mav_value of the type 3*2^n - 1?
if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
}
// Is mav_value of the type 5*2^n - 1?
if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
}
// Apparently it can't be represented with a bounded integer sequence...
// just iterate.
mav_value--;
}
return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
}
static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
std::array<IntegerEncodedValue, 256> encodings{};
for (std::size_t i = 0; i < encodings.size(); ++i) {
encodings[i] = CreateEncoding(static_cast<u32>(i));
}
return encodings;
}
static constexpr std::array<IntegerEncodedValue, 256> ASTC_ENCODINGS_VALUES = MakeEncodedValues();
namespace Tegra::Texture::ASTC { namespace Tegra::Texture::ASTC {
using IntegerEncodedVector = boost::container::static_vector< using IntegerEncodedVector = boost::container::static_vector<
IntegerEncodedValue, 256, IntegerEncodedValue, 256,
@ -521,35 +591,41 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
return params; return params;
} }
static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth, // Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
u32 blockHeight) { // is the same as [(num_bits - 1):0] and repeats all the way down.
// Don't actually care about the void extent, just read the bits... template <typename IntType>
for (s32 i = 0; i < 4; ++i) { static constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
strm.ReadBits<13>(); if (num_bits == 0 || to_bit == 0) {
return 0;
}
const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
IntType res = v;
u32 reslen = num_bits;
while (reslen < to_bit) {
u32 comp = 0;
if (num_bits > to_bit - reslen) {
u32 newshift = to_bit - reslen;
comp = num_bits - newshift;
num_bits = newshift;
}
res = static_cast<IntType>(res << num_bits);
res = static_cast<IntType>(res | (v >> comp));
reslen += num_bits;
}
return res;
} }
// Decode the RGBA components and renormalize them to the range [0, 255] static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
u16 r = static_cast<u16>(strm.ReadBits<16>()); return std::size_t(1) << num_bits;
u16 g = static_cast<u16>(strm.ReadBits<16>());
u16 b = static_cast<u16>(strm.ReadBits<16>());
u16 a = static_cast<u16>(strm.ReadBits<16>());
u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
(static_cast<u32>(a) & 0xFF00) << 16;
for (u32 j = 0; j < blockHeight; j++) {
for (u32 i = 0; i < blockWidth; i++) {
outBuf[j * blockWidth + i] = rgba;
}
}
} }
static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) { template <typename IntType, u32 num_bits, u32 to_bit>
for (u32 j = 0; j < blockHeight; j++) { static constexpr auto MakeReplicateTable() {
for (u32 i = 0; i < blockWidth; i++) { std::array<IntType, NumReplicateEntries(num_bits)> table{};
outBuf[j * blockWidth + i] = 0xFFFF00FF; for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
} table[value] = Replicate(value, num_bits, to_bit);
} }
return table;
} }
static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>(); static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
@ -572,6 +648,9 @@ static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>
static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>(); static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>(); static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>(); static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback /// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
/// to the runtime implementation /// to the runtime implementation
static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) { static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
@ -1316,6 +1395,37 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
#undef READ_INT_VALUES #undef READ_INT_VALUES
} }
static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth,
u32 blockHeight) {
// Don't actually care about the void extent, just read the bits...
for (s32 i = 0; i < 4; ++i) {
strm.ReadBits<13>();
}
// Decode the RGBA components and renormalize them to the range [0, 255]
u16 r = static_cast<u16>(strm.ReadBits<16>());
u16 g = static_cast<u16>(strm.ReadBits<16>());
u16 b = static_cast<u16>(strm.ReadBits<16>());
u16 a = static_cast<u16>(strm.ReadBits<16>());
u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
(static_cast<u32>(a) & 0xFF00) << 16;
for (u32 j = 0; j < blockHeight; j++) {
for (u32 i = 0; i < blockWidth; i++) {
outBuf[j * blockWidth + i] = rgba;
}
}
}
static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) {
for (u32 j = 0; j < blockHeight; j++) {
for (u32 i = 0; i < blockWidth; i++) {
outBuf[j * blockWidth + i] = 0xFFFF00FF;
}
}
}
static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth, static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth,
const u32 blockHeight, std::span<u32, 12 * 12> outBuf) { const u32 blockHeight, std::span<u32, 12 * 12> outBuf) {
InputBitStream strm(inBuf); InputBitStream strm(inBuf);

View file

@ -9,117 +9,6 @@
namespace Tegra::Texture::ASTC { namespace Tegra::Texture::ASTC {
enum class IntegerEncoding { JustBits, Quint, Trit };
struct IntegerEncodedValue {
constexpr IntegerEncodedValue() = default;
constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
: encoding{encoding_}, num_bits{num_bits_} {}
constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
return encoding == other.encoding && num_bits == other.num_bits;
}
// Returns the number of bits required to encode num_vals values.
u32 GetBitLength(u32 num_vals) const {
u32 total_bits = num_bits * num_vals;
if (encoding == IntegerEncoding::Trit) {
total_bits += (num_vals * 8 + 4) / 5;
} else if (encoding == IntegerEncoding::Quint) {
total_bits += (num_vals * 7 + 2) / 3;
}
return total_bits;
}
IntegerEncoding encoding{};
u32 num_bits = 0;
u32 bit_value = 0;
union {
u32 quint_value = 0;
u32 trit_value;
};
};
// Returns a new instance of this struct that corresponds to the
// can take no more than mav_value values
constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
while (mav_value > 0) {
u32 check = mav_value + 1;
// Is mav_value a power of two?
if (!(check & (check - 1))) {
return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
}
// Is mav_value of the type 3*2^n - 1?
if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
}
// Is mav_value of the type 5*2^n - 1?
if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
}
// Apparently it can't be represented with a bounded integer sequence...
// just iterate.
mav_value--;
}
return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
}
constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
std::array<IntegerEncodedValue, 256> encodings{};
for (std::size_t i = 0; i < encodings.size(); ++i) {
encodings[i] = CreateEncoding(static_cast<u32>(i));
}
return encodings;
}
constexpr std::array<IntegerEncodedValue, 256> ASTC_ENCODINGS_VALUES = MakeEncodedValues();
// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
// is the same as [(num_bits - 1):0] and repeats all the way down.
template <typename IntType>
constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
if (num_bits == 0 || to_bit == 0) {
return 0;
}
const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
IntType res = v;
u32 reslen = num_bits;
while (reslen < to_bit) {
u32 comp = 0;
if (num_bits > to_bit - reslen) {
u32 newshift = to_bit - reslen;
comp = num_bits - newshift;
num_bits = newshift;
}
res = static_cast<IntType>(res << num_bits);
res = static_cast<IntType>(res | (v >> comp));
reslen += num_bits;
}
return res;
}
constexpr std::size_t NumReplicateEntries(u32 num_bits) {
return std::size_t(1) << num_bits;
}
template <typename IntType, u32 num_bits, u32 to_bit>
constexpr auto MakeReplicateTable() {
std::array<IntType, NumReplicateEntries(num_bits)> table{};
for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
table[value] = Replicate(value, num_bits, to_bit);
}
return table;
}
constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth, void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
uint32_t block_width, uint32_t block_height, std::span<uint8_t> output); uint32_t block_width, uint32_t block_height, std::span<uint8_t> output);