early-access version 4028

This commit is contained in:
pineappleEA 2023-12-20 02:37:09 +01:00
parent 4539458956
commit 7bd2421ff9
51 changed files with 1669 additions and 645 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access yuzu emulator early access
============= =============
This is the source code for early-access 4027. This is the source code for early-access 4028.
## Legal Notice ## Legal Notice

View file

@ -9,7 +9,7 @@
namespace Core { namespace Core {
void ArmInterface::LogBacktrace(const Kernel::KProcess* process) const { void ArmInterface::LogBacktrace(Kernel::KProcess* process) const {
Kernel::Svc::ThreadContext ctx; Kernel::Svc::ThreadContext ctx;
this->GetContext(ctx); this->GetContext(ctx);

View file

@ -95,7 +95,7 @@ public:
virtual void SignalInterrupt(Kernel::KThread* thread) = 0; virtual void SignalInterrupt(Kernel::KThread* thread) = 0;
// Stack trace generation. // Stack trace generation.
void LogBacktrace(const Kernel::KProcess* process) const; void LogBacktrace(Kernel::KProcess* process) const;
// Debug functionality. // Debug functionality.
virtual const Kernel::DebugWatchpoint* HaltedWatchpoint() const = 0; virtual const Kernel::DebugWatchpoint* HaltedWatchpoint() const = 0;

View file

@ -79,7 +79,7 @@ constexpr std::array<u64, 2> SegmentBases{
0x7100000000ULL, 0x7100000000ULL,
}; };
void SymbolicateBacktrace(const Kernel::KProcess* process, std::vector<BacktraceEntry>& out) { void SymbolicateBacktrace(Kernel::KProcess* process, std::vector<BacktraceEntry>& out) {
auto modules = FindModules(process); auto modules = FindModules(process);
const bool is_64 = process->Is64Bit(); const bool is_64 = process->Is64Bit();
@ -118,7 +118,7 @@ void SymbolicateBacktrace(const Kernel::KProcess* process, std::vector<Backtrace
} }
} }
std::vector<BacktraceEntry> GetAArch64Backtrace(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetAArch64Backtrace(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
std::vector<BacktraceEntry> out; std::vector<BacktraceEntry> out;
auto& memory = process->GetMemory(); auto& memory = process->GetMemory();
@ -144,7 +144,7 @@ std::vector<BacktraceEntry> GetAArch64Backtrace(const Kernel::KProcess* process,
return out; return out;
} }
std::vector<BacktraceEntry> GetAArch32Backtrace(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetAArch32Backtrace(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
std::vector<BacktraceEntry> out; std::vector<BacktraceEntry> out;
auto& memory = process->GetMemory(); auto& memory = process->GetMemory();
@ -173,7 +173,7 @@ std::vector<BacktraceEntry> GetAArch32Backtrace(const Kernel::KProcess* process,
} // namespace } // namespace
std::optional<std::string> GetThreadName(const Kernel::KThread* thread) { std::optional<std::string> GetThreadName(const Kernel::KThread* thread) {
const auto* process = thread->GetOwnerProcess(); auto* process = thread->GetOwnerProcess();
if (process->Is64Bit()) { if (process->Is64Bit()) {
return GetNameFromThreadType64(process->GetMemory(), *thread); return GetNameFromThreadType64(process->GetMemory(), *thread);
} else { } else {
@ -248,7 +248,7 @@ Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process,
return cur_addr - 1; return cur_addr - 1;
} }
Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process) { Loader::AppLoader::Modules FindModules(Kernel::KProcess* process) {
Loader::AppLoader::Modules modules; Loader::AppLoader::Modules modules;
auto& page_table = process->GetPageTable(); auto& page_table = process->GetPageTable();
@ -312,7 +312,7 @@ Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process) {
return modules; return modules;
} }
Kernel::KProcessAddress FindMainModuleEntrypoint(const Kernel::KProcess* process) { Kernel::KProcessAddress FindMainModuleEntrypoint(Kernel::KProcess* process) {
// Do we have any loaded executable sections? // Do we have any loaded executable sections?
auto modules = FindModules(process); auto modules = FindModules(process);
@ -337,7 +337,7 @@ void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 addres
} }
} }
std::vector<BacktraceEntry> GetBacktraceFromContext(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetBacktraceFromContext(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
if (process->Is64Bit()) { if (process->Is64Bit()) {
return GetAArch64Backtrace(process, ctx); return GetAArch64Backtrace(process, ctx);

View file

@ -14,9 +14,9 @@ std::optional<std::string> GetThreadName(const Kernel::KThread* thread);
std::string_view GetThreadWaitReason(const Kernel::KThread* thread); std::string_view GetThreadWaitReason(const Kernel::KThread* thread);
std::string GetThreadState(const Kernel::KThread* thread); std::string GetThreadState(const Kernel::KThread* thread);
Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process); Loader::AppLoader::Modules FindModules(Kernel::KProcess* process);
Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process, Kernel::KProcessAddress base); Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process, Kernel::KProcessAddress base);
Kernel::KProcessAddress FindMainModuleEntrypoint(const Kernel::KProcess* process); Kernel::KProcessAddress FindMainModuleEntrypoint(Kernel::KProcess* process);
void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 address, u64 size); void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 address, u64 size);
@ -28,7 +28,7 @@ struct BacktraceEntry {
std::string name; std::string name;
}; };
std::vector<BacktraceEntry> GetBacktraceFromContext(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetBacktraceFromContext(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx); const Kernel::Svc::ThreadContext& ctx);
std::vector<BacktraceEntry> GetBacktrace(const Kernel::KThread* thread); std::vector<BacktraceEntry> GetBacktrace(const Kernel::KThread* thread);

View file

@ -15,7 +15,7 @@ using namespace Common::Literals;
class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks { class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks {
public: public:
explicit DynarmicCallbacks32(ArmDynarmic32& parent, const Kernel::KProcess* process) explicit DynarmicCallbacks32(ArmDynarmic32& parent, Kernel::KProcess* process)
: m_parent{parent}, m_memory(process->GetMemory()), : m_parent{parent}, m_memory(process->GetMemory()),
m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()}, m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()},
m_check_memory_access{m_debugger_enabled || m_check_memory_access{m_debugger_enabled ||
@ -169,7 +169,7 @@ public:
ArmDynarmic32& m_parent; ArmDynarmic32& m_parent;
Core::Memory::Memory& m_memory; Core::Memory::Memory& m_memory;
const Kernel::KProcess* m_process{}; Kernel::KProcess* m_process{};
const bool m_debugger_enabled{}; const bool m_debugger_enabled{};
const bool m_check_memory_access{}; const bool m_check_memory_access{};
static constexpr u64 MinimumRunCycles = 10000U; static constexpr u64 MinimumRunCycles = 10000U;
@ -370,7 +370,7 @@ void ArmDynarmic32::RewindBreakpointInstruction() {
this->SetContext(m_breakpoint_context); this->SetContext(m_breakpoint_context);
} }
ArmDynarmic32::ArmDynarmic32(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic32::ArmDynarmic32(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index) DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index)
: ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor}, : ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor},
m_cb(std::make_unique<DynarmicCallbacks32>(*this, process)), m_cb(std::make_unique<DynarmicCallbacks32>(*this, process)),

View file

@ -20,7 +20,7 @@ class System;
class ArmDynarmic32 final : public ArmInterface { class ArmDynarmic32 final : public ArmInterface {
public: public:
ArmDynarmic32(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic32(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index); DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ArmDynarmic32() override; ~ArmDynarmic32() override;

View file

@ -15,7 +15,7 @@ using namespace Common::Literals;
class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks { class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public: public:
explicit DynarmicCallbacks64(ArmDynarmic64& parent, const Kernel::KProcess* process) explicit DynarmicCallbacks64(ArmDynarmic64& parent, Kernel::KProcess* process)
: m_parent{parent}, m_memory(process->GetMemory()), : m_parent{parent}, m_memory(process->GetMemory()),
m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()}, m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()},
m_check_memory_access{m_debugger_enabled || m_check_memory_access{m_debugger_enabled ||
@ -216,7 +216,7 @@ public:
Core::Memory::Memory& m_memory; Core::Memory::Memory& m_memory;
u64 m_tpidrro_el0{}; u64 m_tpidrro_el0{};
u64 m_tpidr_el0{}; u64 m_tpidr_el0{};
const Kernel::KProcess* m_process{}; Kernel::KProcess* m_process{};
const bool m_debugger_enabled{}; const bool m_debugger_enabled{};
const bool m_check_memory_access{}; const bool m_check_memory_access{};
static constexpr u64 MinimumRunCycles = 10000U; static constexpr u64 MinimumRunCycles = 10000U;
@ -399,7 +399,7 @@ void ArmDynarmic64::RewindBreakpointInstruction() {
this->SetContext(m_breakpoint_context); this->SetContext(m_breakpoint_context);
} }
ArmDynarmic64::ArmDynarmic64(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic64::ArmDynarmic64(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index) DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index)
: ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor}, : ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor},
m_cb(std::make_unique<DynarmicCallbacks64>(*this, process)), m_core_index{core_index} { m_cb(std::make_unique<DynarmicCallbacks64>(*this, process)), m_core_index{core_index} {

View file

@ -25,7 +25,7 @@ class System;
class ArmDynarmic64 final : public ArmInterface { class ArmDynarmic64 final : public ArmInterface {
public: public:
ArmDynarmic64(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic64(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index); DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ArmDynarmic64() override; ~ArmDynarmic64() override;

View file

@ -28,7 +28,6 @@
#include "core/file_sys/savedata_factory.h" #include "core/file_sys/savedata_factory.h"
#include "core/file_sys/vfs_concat.h" #include "core/file_sys/vfs_concat.h"
#include "core/file_sys/vfs_real.h" #include "core/file_sys/vfs_real.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hid/hid_core.h" #include "core/hid/hid_core.h"
#include "core/hle/kernel/k_memory_manager.h" #include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_process.h"
@ -130,11 +129,8 @@ FileSys::VirtualFile GetGameFileFromPath(const FileSys::VirtualFilesystem& vfs,
struct System::Impl { struct System::Impl {
explicit Impl(System& system) explicit Impl(System& system)
: kernel{system}, fs_controller{system}, memory{system}, hid_core{}, room_network{}, : kernel{system}, fs_controller{system}, hid_core{}, room_network{}, cpu_manager{system},
cpu_manager{system}, reporter{system}, applet_manager{system}, profile_manager{}, reporter{system}, applet_manager{system}, profile_manager{}, time_manager{system} {}
time_manager{system}, gpu_dirty_memory_write_manager{} {
memory.SetGPUDirtyManagers(gpu_dirty_memory_write_manager);
}
void Initialize(System& system) { void Initialize(System& system) {
device_memory = std::make_unique<Core::DeviceMemory>(); device_memory = std::make_unique<Core::DeviceMemory>();
@ -241,17 +237,17 @@ struct System::Impl {
debugger = std::make_unique<Debugger>(system, port); debugger = std::make_unique<Debugger>(system, port);
} }
SystemResultStatus SetupForApplicationProcess(System& system, Frontend::EmuWindow& emu_window) { void InitializeKernel(System& system) {
LOG_DEBUG(Core, "initialized OK"); LOG_DEBUG(Core, "initialized OK");
// Setting changes may require a full system reinitialization (e.g., disabling multicore). // Setting changes may require a full system reinitialization (e.g., disabling multicore).
ReinitializeIfNecessary(system); ReinitializeIfNecessary(system);
memory.SetGPUDirtyManagers(gpu_dirty_memory_write_manager);
kernel.Initialize(); kernel.Initialize();
cpu_manager.Initialize(); cpu_manager.Initialize();
}
SystemResultStatus SetupForApplicationProcess(System& system, Frontend::EmuWindow& emu_window) {
/// Reset all glue registrations /// Reset all glue registrations
arp_manager.ResetAll(); arp_manager.ResetAll();
@ -300,17 +296,9 @@ struct System::Impl {
return SystemResultStatus::ErrorGetLoader; return SystemResultStatus::ErrorGetLoader;
} }
SystemResultStatus init_result{SetupForApplicationProcess(system, emu_window)}; InitializeKernel(system);
if (init_result != SystemResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<int>(init_result));
ShutdownMainProcess();
return init_result;
}
telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider); // Create the application process.
// Create the process.
auto main_process = Kernel::KProcess::Create(system.Kernel()); auto main_process = Kernel::KProcess::Create(system.Kernel());
Kernel::KProcess::Register(system.Kernel(), main_process); Kernel::KProcess::Register(system.Kernel(), main_process);
kernel.AppendNewProcess(main_process); kernel.AppendNewProcess(main_process);
@ -323,7 +311,18 @@ struct System::Impl {
return static_cast<SystemResultStatus>( return static_cast<SystemResultStatus>(
static_cast<u32>(SystemResultStatus::ErrorLoader) + static_cast<u32>(load_result)); static_cast<u32>(SystemResultStatus::ErrorLoader) + static_cast<u32>(load_result));
} }
// Set up the rest of the system.
SystemResultStatus init_result{SetupForApplicationProcess(system, emu_window)};
if (init_result != SystemResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<int>(init_result));
ShutdownMainProcess();
return init_result;
}
AddGlueRegistrationForProcess(*app_loader, *main_process); AddGlueRegistrationForProcess(*app_loader, *main_process);
telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider);
// Initialize cheat engine // Initialize cheat engine
if (cheat_engine) { if (cheat_engine) {
@ -426,7 +425,6 @@ struct System::Impl {
cpu_manager.Shutdown(); cpu_manager.Shutdown();
debugger.reset(); debugger.reset();
kernel.Shutdown(); kernel.Shutdown();
memory.Reset();
Network::RestartSocketOperations(); Network::RestartSocketOperations();
if (auto room_member = room_network.GetRoomMember().lock()) { if (auto room_member = room_network.GetRoomMember().lock()) {
@ -507,7 +505,6 @@ struct System::Impl {
std::unique_ptr<Tegra::Host1x::Host1x> host1x_core; std::unique_ptr<Tegra::Host1x::Host1x> host1x_core;
std::unique_ptr<Core::DeviceMemory> device_memory; std::unique_ptr<Core::DeviceMemory> device_memory;
std::unique_ptr<AudioCore::AudioCore> audio_core; std::unique_ptr<AudioCore::AudioCore> audio_core;
Core::Memory::Memory memory;
Core::HID::HIDCore hid_core; Core::HID::HIDCore hid_core;
Network::RoomNetwork room_network; Network::RoomNetwork room_network;
@ -567,9 +564,6 @@ struct System::Impl {
std::array<u64, Core::Hardware::NUM_CPU_CORES> dynarmic_ticks{}; std::array<u64, Core::Hardware::NUM_CPU_CORES> dynarmic_ticks{};
std::array<MicroProfileToken, Core::Hardware::NUM_CPU_CORES> microprofile_cpu{}; std::array<MicroProfileToken, Core::Hardware::NUM_CPU_CORES> microprofile_cpu{};
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES>
gpu_dirty_memory_write_manager{};
std::deque<std::vector<u8>> user_channel; std::deque<std::vector<u8>> user_channel;
}; };
@ -652,29 +646,12 @@ void System::PrepareReschedule(const u32 core_index) {
impl->kernel.PrepareReschedule(core_index); impl->kernel.PrepareReschedule(core_index);
} }
Core::GPUDirtyMemoryManager& System::CurrentGPUDirtyMemoryManager() {
const std::size_t core = impl->kernel.GetCurrentHostThreadID();
return impl->gpu_dirty_memory_write_manager[core < Core::Hardware::NUM_CPU_CORES
? core
: Core::Hardware::NUM_CPU_CORES - 1];
}
/// Provides a constant reference to the current gou dirty memory manager.
const Core::GPUDirtyMemoryManager& System::CurrentGPUDirtyMemoryManager() const {
const std::size_t core = impl->kernel.GetCurrentHostThreadID();
return impl->gpu_dirty_memory_write_manager[core < Core::Hardware::NUM_CPU_CORES
? core
: Core::Hardware::NUM_CPU_CORES - 1];
}
size_t System::GetCurrentHostThreadID() const { size_t System::GetCurrentHostThreadID() const {
return impl->kernel.GetCurrentHostThreadID(); return impl->kernel.GetCurrentHostThreadID();
} }
void System::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) { void System::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
for (auto& manager : impl->gpu_dirty_memory_write_manager) { return this->ApplicationProcess()->GatherGPUDirtyMemory(callback);
manager.Gather(callback);
}
} }
PerfStatsResults System::GetAndResetPerfStats() { PerfStatsResults System::GetAndResetPerfStats() {
@ -723,20 +700,12 @@ const Kernel::KProcess* System::ApplicationProcess() const {
return impl->kernel.ApplicationProcess(); return impl->kernel.ApplicationProcess();
} }
ExclusiveMonitor& System::Monitor() {
return impl->kernel.GetExclusiveMonitor();
}
const ExclusiveMonitor& System::Monitor() const {
return impl->kernel.GetExclusiveMonitor();
}
Memory::Memory& System::ApplicationMemory() { Memory::Memory& System::ApplicationMemory() {
return impl->memory; return impl->kernel.ApplicationProcess()->GetMemory();
} }
const Core::Memory::Memory& System::ApplicationMemory() const { const Core::Memory::Memory& System::ApplicationMemory() const {
return impl->memory; return impl->kernel.ApplicationProcess()->GetMemory();
} }
Tegra::GPU& System::GPU() { Tegra::GPU& System::GPU() {

View file

@ -116,7 +116,6 @@ class CpuManager;
class Debugger; class Debugger;
class DeviceMemory; class DeviceMemory;
class ExclusiveMonitor; class ExclusiveMonitor;
class GPUDirtyMemoryManager;
class PerfStats; class PerfStats;
class Reporter; class Reporter;
class SpeedLimiter; class SpeedLimiter;
@ -225,12 +224,6 @@ public:
/// Prepare the core emulation for a reschedule /// Prepare the core emulation for a reschedule
void PrepareReschedule(u32 core_index); void PrepareReschedule(u32 core_index);
/// Provides a reference to the gou dirty memory manager.
[[nodiscard]] Core::GPUDirtyMemoryManager& CurrentGPUDirtyMemoryManager();
/// Provides a constant reference to the current gou dirty memory manager.
[[nodiscard]] const Core::GPUDirtyMemoryManager& CurrentGPUDirtyMemoryManager() const;
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback); void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
[[nodiscard]] size_t GetCurrentHostThreadID() const; [[nodiscard]] size_t GetCurrentHostThreadID() const;
@ -250,12 +243,6 @@ public:
/// Gets a const reference to the underlying CPU manager /// Gets a const reference to the underlying CPU manager
[[nodiscard]] const CpuManager& GetCpuManager() const; [[nodiscard]] const CpuManager& GetCpuManager() const;
/// Gets a reference to the exclusive monitor
[[nodiscard]] ExclusiveMonitor& Monitor();
/// Gets a constant reference to the exclusive monitor
[[nodiscard]] const ExclusiveMonitor& Monitor() const;
/// Gets a mutable reference to the system memory instance. /// Gets a mutable reference to the system memory instance.
[[nodiscard]] Core::Memory::Memory& ApplicationMemory(); [[nodiscard]] Core::Memory::Memory& ApplicationMemory();

View file

@ -166,6 +166,10 @@ u32 ProgramMetadata::GetSystemResourceSize() const {
return npdm_header.system_resource_size; return npdm_header.system_resource_size;
} }
PoolPartition ProgramMetadata::GetPoolPartition() const {
return acid_header.pool_partition;
}
const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const { const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const {
return aci_kernel_capabilities; return aci_kernel_capabilities;
} }
@ -201,7 +205,7 @@ void ProgramMetadata::Print() const {
// Begin ACID printing (potential perms, signed) // Begin ACID printing (potential perms, signed)
LOG_DEBUG(Service_FS, "Magic: {:.4}", acid_header.magic.data()); LOG_DEBUG(Service_FS, "Magic: {:.4}", acid_header.magic.data());
LOG_DEBUG(Service_FS, "Flags: 0x{:02X}", acid_header.flags); LOG_DEBUG(Service_FS, "Flags: 0x{:02X}", acid_header.flags);
LOG_DEBUG(Service_FS, " > Is Retail: {}", acid_header.is_retail ? "YES" : "NO"); LOG_DEBUG(Service_FS, " > Is Retail: {}", acid_header.production_flag ? "YES" : "NO");
LOG_DEBUG(Service_FS, "Title ID Min: 0x{:016X}", acid_header.title_id_min); LOG_DEBUG(Service_FS, "Title ID Min: 0x{:016X}", acid_header.title_id_min);
LOG_DEBUG(Service_FS, "Title ID Max: 0x{:016X}", acid_header.title_id_max); LOG_DEBUG(Service_FS, "Title ID Max: 0x{:016X}", acid_header.title_id_max);
LOG_DEBUG(Service_FS, "Filesystem Access: 0x{:016X}\n", acid_file_access.permissions); LOG_DEBUG(Service_FS, "Filesystem Access: 0x{:016X}\n", acid_file_access.permissions);

View file

@ -34,6 +34,13 @@ enum class ProgramFilePermission : u64 {
Everything = 1ULL << 63, Everything = 1ULL << 63,
}; };
enum class PoolPartition : u32 {
Application = 0,
Applet = 1,
System = 2,
SystemNonSecure = 3,
};
/** /**
* Helper which implements an interface to parse Program Description Metadata (NPDM) * Helper which implements an interface to parse Program Description Metadata (NPDM)
* Data can either be loaded from a file path or with data and an offset into it. * Data can either be loaded from a file path or with data and an offset into it.
@ -72,6 +79,7 @@ public:
u64 GetTitleID() const; u64 GetTitleID() const;
u64 GetFilesystemPermissions() const; u64 GetFilesystemPermissions() const;
u32 GetSystemResourceSize() const; u32 GetSystemResourceSize() const;
PoolPartition GetPoolPartition() const;
const KernelCapabilityDescriptors& GetKernelCapabilities() const; const KernelCapabilityDescriptors& GetKernelCapabilities() const;
const std::array<u8, 0x10>& GetName() const { const std::array<u8, 0x10>& GetName() const {
return npdm_header.application_name; return npdm_header.application_name;
@ -116,8 +124,9 @@ private:
union { union {
u32 flags; u32 flags;
BitField<0, 1, u32> is_retail; BitField<0, 1, u32> production_flag;
BitField<1, 31, u32> flags_unk; BitField<1, 1, u32> unqualified_approval;
BitField<2, 4, PoolPartition> pool_partition;
}; };
u64_le title_id_min; u64_le title_id_min;
u64_le title_id_max; u64_le title_id_max;

View file

@ -4,6 +4,7 @@
#include "core/arm/exclusive_monitor.h" #include "core/arm/exclusive_monitor.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/k_address_arbiter.h" #include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
@ -26,9 +27,9 @@ bool ReadFromUser(KernelCore& kernel, s32* out, KProcessAddress address) {
return true; return true;
} }
bool DecrementIfLessThan(Core::System& system, s32* out, KProcessAddress address, s32 value) { bool DecrementIfLessThan(KernelCore& kernel, s32* out, KProcessAddress address, s32 value) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
// NOTE: If scheduler lock is not held here, interrupt disable is required. // NOTE: If scheduler lock is not held here, interrupt disable is required.
// KScopedInterruptDisable di; // KScopedInterruptDisable di;
@ -66,10 +67,10 @@ bool DecrementIfLessThan(Core::System& system, s32* out, KProcessAddress address
return true; return true;
} }
bool UpdateIfEqual(Core::System& system, s32* out, KProcessAddress address, s32 value, bool UpdateIfEqual(KernelCore& kernel, s32* out, KProcessAddress address, s32 value,
s32 new_value) { s32 new_value) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
// NOTE: If scheduler lock is not held here, interrupt disable is required. // NOTE: If scheduler lock is not held here, interrupt disable is required.
// KScopedInterruptDisable di; // KScopedInterruptDisable di;
@ -159,7 +160,7 @@ Result KAddressArbiter::SignalAndIncrementIfEqual(uint64_t addr, s32 value, s32
// Check the userspace value. // Check the userspace value.
s32 user_value{}; s32 user_value{};
R_UNLESS(UpdateIfEqual(m_system, std::addressof(user_value), addr, value, value + 1), R_UNLESS(UpdateIfEqual(m_kernel, std::addressof(user_value), addr, value, value + 1),
ResultInvalidCurrentMemory); ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState); R_UNLESS(user_value == value, ResultInvalidState);
@ -219,7 +220,7 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(uint64_t addr, s32
s32 user_value{}; s32 user_value{};
bool succeeded{}; bool succeeded{};
if (value != new_value) { if (value != new_value) {
succeeded = UpdateIfEqual(m_system, std::addressof(user_value), addr, value, new_value); succeeded = UpdateIfEqual(m_kernel, std::addressof(user_value), addr, value, new_value);
} else { } else {
succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr); succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr);
} }
@ -262,7 +263,7 @@ Result KAddressArbiter::WaitIfLessThan(uint64_t addr, s32 value, bool decrement,
s32 user_value{}; s32 user_value{};
bool succeeded{}; bool succeeded{};
if (decrement) { if (decrement) {
succeeded = DecrementIfLessThan(m_system, std::addressof(user_value), addr, value); succeeded = DecrementIfLessThan(m_kernel, std::addressof(user_value), addr, value);
} else { } else {
succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr); succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr);
} }

View file

@ -58,9 +58,8 @@ Result KClientPort::CreateSession(KClientSession** out) {
KSession* session{}; KSession* session{};
// Reserve a new session from the resource limit. // Reserve a new session from the resource limit.
//! FIXME: we are reserving this from the wrong resource limit! KScopedResourceReservation session_reservation(GetCurrentProcessPointer(m_kernel),
KScopedResourceReservation session_reservation( LimitableResource::SessionCountMax);
m_kernel.ApplicationProcess()->GetResourceLimit(), LimitableResource::SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached); R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
// Allocate a session normally. // Allocate a session normally.

View file

@ -28,10 +28,10 @@ bool WriteToUser(KernelCore& kernel, KProcessAddress address, const u32* p) {
return true; return true;
} }
bool UpdateLockAtomic(Core::System& system, u32* out, KProcessAddress address, u32 if_zero, bool UpdateLockAtomic(KernelCore& kernel, u32* out, KProcessAddress address, u32 if_zero,
u32 new_orr_mask) { u32 new_orr_mask) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
u32 expected{}; u32 expected{};
@ -208,7 +208,7 @@ void KConditionVariable::SignalImpl(KThread* thread) {
// TODO(bunnei): We should call CanAccessAtomic(..) here. // TODO(bunnei): We should call CanAccessAtomic(..) here.
can_access = true; can_access = true;
if (can_access) [[likely]] { if (can_access) [[likely]] {
UpdateLockAtomic(m_system, std::addressof(prev_tag), address, own_tag, UpdateLockAtomic(m_kernel, std::addressof(prev_tag), address, own_tag,
Svc::HandleWaitMask); Svc::HandleWaitMask);
} }
} }

View file

@ -30,7 +30,7 @@ public:
public: public:
explicit KHandleTable(KernelCore& kernel) : m_kernel(kernel) {} explicit KHandleTable(KernelCore& kernel) : m_kernel(kernel) {}
Result Initialize(s32 size) { Result Initialize(KProcess* owner, s32 size) {
// Check that the table size is valid. // Check that the table size is valid.
R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory); R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory);
@ -44,6 +44,7 @@ public:
m_next_linear_id = MinLinearId; m_next_linear_id = MinLinearId;
m_count = 0; m_count = 0;
m_free_head_index = -1; m_free_head_index = -1;
m_owner = owner;
// Free all entries. // Free all entries.
for (s32 i = 0; i < static_cast<s32>(m_table_size); ++i) { for (s32 i = 0; i < static_cast<s32>(m_table_size); ++i) {
@ -90,8 +91,8 @@ public:
// Handle pseudo-handles. // Handle pseudo-handles.
if constexpr (std::derived_from<KProcess, T>) { if constexpr (std::derived_from<KProcess, T>) {
if (handle == Svc::PseudoHandle::CurrentProcess) { if (handle == Svc::PseudoHandle::CurrentProcess) {
//! FIXME: this is the wrong process! // TODO: this should be the current process
auto* const cur_process = m_kernel.ApplicationProcess(); auto* const cur_process = m_owner;
ASSERT(cur_process != nullptr); ASSERT(cur_process != nullptr);
return cur_process; return cur_process;
} }
@ -301,6 +302,7 @@ private:
private: private:
KernelCore& m_kernel; KernelCore& m_kernel;
KProcess* m_owner{};
std::array<EntryInfo, MaxTableSize> m_entry_infos{}; std::array<EntryInfo, MaxTableSize> m_entry_infos{};
std::array<KAutoObject*, MaxTableSize> m_objects{}; std::array<KAutoObject*, MaxTableSize> m_objects{};
mutable KSpinLock m_lock; mutable KSpinLock m_lock;

View file

@ -306,12 +306,16 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPa
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge); False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, params.code_num_pages * PageSize, params.code_address, params.code_num_pages * PageSize,
m_system_resource, res_limit, this->GetMemory(), 0)); m_system_resource, res_limit, m_memory, 0));
} }
ON_RESULT_FAILURE_2 { ON_RESULT_FAILURE_2 {
m_page_table.Finalize(); m_page_table.Finalize();
}; };
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region. // Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize, R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
KMemoryState::Code), KMemoryState::Code),
@ -399,12 +403,16 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge); False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, code_size, m_system_resource, res_limit, params.code_address, code_size, m_system_resource, res_limit,
this->GetMemory(), aslr_space_start)); m_memory, aslr_space_start));
} }
ON_RESULT_FAILURE_2 { ON_RESULT_FAILURE_2 {
m_page_table.Finalize(); m_page_table.Finalize();
}; };
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region. // Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code), R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
ResultInvalidMemoryRegion); ResultInvalidMemoryRegion);
@ -1094,8 +1102,7 @@ void KProcess::UnpinThread(KThread* thread) {
Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids, Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
s32 max_out_count) { s32 max_out_count) {
// TODO: use current memory reference auto& memory = this->GetMemory();
auto& memory = m_kernel.System().ApplicationMemory();
// Lock the list. // Lock the list.
KScopedLightLock lk(m_list_lock); KScopedLightLock lk(m_list_lock);
@ -1128,14 +1135,15 @@ void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel) KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel}, : KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()}, m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel} {} m_handle_table{kernel}, m_dirty_memory_managers{},
m_exclusive_monitor{}, m_memory{kernel.System()} {}
KProcess::~KProcess() = default; KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size, Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
KProcessAddress aslr_space_start, bool is_hbl) { KProcessAddress aslr_space_start, bool is_hbl) {
// Create a resource limit for the process. // Create a resource limit for the process.
const auto physical_memory_size = const auto pool = static_cast<KMemoryManager::Pool>(metadata.GetPoolPartition());
m_kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application); const auto physical_memory_size = m_kernel.MemoryManager().GetSize(pool);
auto* res_limit = auto* res_limit =
Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size); Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
@ -1146,8 +1154,10 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
Svc::CreateProcessFlag flag{}; Svc::CreateProcessFlag flag{};
u64 code_address{}; u64 code_address{};
// We are an application. // Determine if we are an application.
flag |= Svc::CreateProcessFlag::IsApplication; if (pool == KMemoryManager::Pool::Application) {
flag |= Svc::CreateProcessFlag::IsApplication;
}
// If we are 64-bit, create as such. // If we are 64-bit, create as such.
if (metadata.Is64BitProgram()) { if (metadata.Is64BitProgram()) {
@ -1196,8 +1206,8 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
std::memcpy(params.name.data(), name.data(), sizeof(params.name)); std::memcpy(params.name.data(), name.data(), sizeof(params.name));
// Initialize for application process. // Initialize for application process.
R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit, R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit, pool,
KMemoryManager::Pool::Application, aslr_space_start)); aslr_space_start));
// Assign remaining properties. // Assign remaining properties.
m_is_hbl = is_hbl; m_is_hbl = is_hbl;
@ -1223,7 +1233,7 @@ void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite); ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
#ifdef HAS_NCE #ifdef HAS_NCE
if (Settings::IsNceEnabled()) { if (this->IsApplication() && Settings::IsNceEnabled()) {
auto& buffer = m_kernel.System().DeviceMemory().buffer; auto& buffer = m_kernel.System().DeviceMemory().buffer;
const auto& code = code_set.CodeSegment(); const auto& code = code_set.CodeSegment();
const auto& patch = code_set.PatchSegment(); const auto& patch = code_set.PatchSegment();
@ -1235,10 +1245,11 @@ void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
} }
void KProcess::InitializeInterfaces() { void KProcess::InitializeInterfaces() {
this->GetMemory().SetCurrentPageTable(*this); m_exclusive_monitor =
Core::MakeExclusiveMonitor(this->GetMemory(), Core::Hardware::NUM_CPU_CORES);
#ifdef HAS_NCE #ifdef HAS_NCE
if (this->Is64Bit() && Settings::IsNceEnabled()) { if (this->IsApplication() && Settings::IsNceEnabled()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i); m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i);
} }
@ -1248,13 +1259,13 @@ void KProcess::InitializeInterfaces() {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>( m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>(
m_kernel.System(), m_kernel.IsMulticore(), this, m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i); static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
} }
} else { } else {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>( m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>(
m_kernel.System(), m_kernel.IsMulticore(), this, m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i); static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
} }
} }
} }
@ -1305,9 +1316,10 @@ bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointT
return true; return true;
} }
Core::Memory::Memory& KProcess::GetMemory() const { void KProcess::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
// TODO: per-process memory for (auto& manager : m_dirty_memory_managers) {
return m_kernel.System().ApplicationMemory(); manager.Gather(callback);
}
} }
} // namespace Kernel } // namespace Kernel

View file

@ -7,6 +7,7 @@
#include "core/arm/arm_interface.h" #include "core/arm/arm_interface.h"
#include "core/file_sys/program_metadata.h" #include "core/file_sys/program_metadata.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hle/kernel/code_set.h" #include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_address_arbiter.h" #include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_capabilities.h" #include "core/hle/kernel/k_capabilities.h"
@ -17,6 +18,7 @@
#include "core/hle/kernel/k_system_resource.h" #include "core/hle/kernel/k_system_resource.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_local_page.h" #include "core/hle/kernel/k_thread_local_page.h"
#include "core/memory.h"
namespace Kernel { namespace Kernel {
@ -126,6 +128,9 @@ private:
#ifdef HAS_NCE #ifdef HAS_NCE
std::unordered_map<u64, u64> m_post_handlers{}; std::unordered_map<u64, u64> m_post_handlers{};
#endif #endif
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES> m_dirty_memory_managers;
std::unique_ptr<Core::ExclusiveMonitor> m_exclusive_monitor;
Core::Memory::Memory m_memory;
private: private:
Result StartTermination(); Result StartTermination();
@ -502,7 +507,15 @@ public:
void InitializeInterfaces(); void InitializeInterfaces();
Core::Memory::Memory& GetMemory() const; Core::Memory::Memory& GetMemory() {
return m_memory;
}
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
Core::ExclusiveMonitor& GetExclusiveMonitor() const {
return *m_exclusive_monitor;
}
public: public:
// Overridden parent functions. // Overridden parent functions.
@ -539,7 +552,7 @@ private:
Result InitializeHandleTable(s32 size) { Result InitializeHandleTable(s32 size) {
// Try to initialize the handle table. // Try to initialize the handle table.
R_TRY(m_handle_table.Initialize(size)); R_TRY(m_handle_table.Initialize(this, size));
// We succeeded, so note that we did. // We succeeded, so note that we did.
m_is_handle_table_initialized = true; m_is_handle_table_initialized = true;

File diff suppressed because it is too large Load diff

View file

@ -49,14 +49,21 @@ public:
bool IsSignaled() const override; bool IsSignaled() const override;
void OnClientClosed(); void OnClientClosed();
/// TODO: flesh these out to match the real kernel
Result OnRequest(KSessionRequest* request); Result OnRequest(KSessionRequest* request);
Result SendReply(bool is_hle = false); Result SendReply(uintptr_t server_message, uintptr_t server_buffer_size,
Result ReceiveRequest(std::shared_ptr<Service::HLERequestContext>* out_context = nullptr, KPhysicalAddress server_message_paddr, bool is_hle = false);
Result ReceiveRequest(uintptr_t server_message, uintptr_t server_buffer_size,
KPhysicalAddress server_message_paddr,
std::shared_ptr<Service::HLERequestContext>* out_context = nullptr,
std::weak_ptr<Service::SessionRequestManager> manager = {}); std::weak_ptr<Service::SessionRequestManager> manager = {});
Result SendReplyHLE() { Result SendReplyHLE() {
return SendReply(true); R_RETURN(this->SendReply(0, 0, 0, true));
}
Result ReceiveRequestHLE(std::shared_ptr<Service::HLERequestContext>* out_context,
std::weak_ptr<Service::SessionRequestManager> manager) {
R_RETURN(this->ReceiveRequest(0, 0, 0, out_context, manager));
} }
private: private:

View file

@ -33,8 +33,7 @@ void KSession::Initialize(KClientPort* client_port, uintptr_t name) {
m_name = name; m_name = name;
// Set our owner process. // Set our owner process.
//! FIXME: this is the wrong process! m_process = GetCurrentProcessPointer(m_kernel);
m_process = m_kernel.ApplicationProcess();
m_process->Open(); m_process->Open();
// Set our port. // Set our port.

View file

@ -1422,8 +1422,7 @@ s32 GetCurrentCoreId(KernelCore& kernel) {
} }
Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel) { Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel) {
// TODO: per-process memory return GetCurrentProcess(kernel).GetMemory();
return kernel.System().ApplicationMemory();
} }
KScopedDisableDispatch::~KScopedDisableDispatch() { KScopedDisableDispatch::~KScopedDisableDispatch() {

View file

@ -314,11 +314,7 @@ public:
m_current_core_id = core; m_current_core_id = core;
} }
KProcess* GetOwnerProcess() { KProcess* GetOwnerProcess() const {
return m_parent;
}
const KProcess* GetOwnerProcess() const {
return m_parent; return m_parent;
} }

View file

@ -68,8 +68,6 @@ struct KernelCore::Impl {
global_object_list_container = std::make_unique<KAutoObjectWithListContainer>(kernel); global_object_list_container = std::make_unique<KAutoObjectWithListContainer>(kernel);
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel); global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
global_handle_table = std::make_unique<Kernel::KHandleTable>(kernel);
global_handle_table->Initialize(KHandleTable::MaxTableSize);
is_phantom_mode_for_singlecore = false; is_phantom_mode_for_singlecore = false;
@ -121,13 +119,8 @@ struct KernelCore::Impl {
next_user_process_id = KProcess::ProcessIdMin; next_user_process_id = KProcess::ProcessIdMin;
next_thread_id = 1; next_thread_id = 1;
global_handle_table->Finalize();
global_handle_table.reset();
preemption_event = nullptr; preemption_event = nullptr;
exclusive_monitor.reset();
// Cleanup persistent kernel objects // Cleanup persistent kernel objects
auto CleanupObject = [](KAutoObject* obj) { auto CleanupObject = [](KAutoObject* obj) {
if (obj) { if (obj) {
@ -191,8 +184,6 @@ struct KernelCore::Impl {
} }
void InitializePhysicalCores() { void InitializePhysicalCores() {
exclusive_monitor =
Core::MakeExclusiveMonitor(system.ApplicationMemory(), Core::Hardware::NUM_CPU_CORES);
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
const s32 core{static_cast<s32>(i)}; const s32 core{static_cast<s32>(i)};
@ -791,10 +782,6 @@ struct KernelCore::Impl {
std::shared_ptr<Core::Timing::EventType> preemption_event; std::shared_ptr<Core::Timing::EventType> preemption_event;
// This is the kernel's handle table or supervisor handle table which
// stores all the objects in place.
std::unique_ptr<KHandleTable> global_handle_table;
std::unique_ptr<KAutoObjectWithListContainer> global_object_list_container; std::unique_ptr<KAutoObjectWithListContainer> global_object_list_container;
std::unique_ptr<KObjectNameGlobalData> object_name_global_data; std::unique_ptr<KObjectNameGlobalData> object_name_global_data;
@ -805,7 +792,6 @@ struct KernelCore::Impl {
std::mutex server_lock; std::mutex server_lock;
std::vector<std::unique_ptr<Service::ServerManager>> server_managers; std::vector<std::unique_ptr<Service::ServerManager>> server_managers;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::array<std::unique_ptr<Kernel::PhysicalCore>, Core::Hardware::NUM_CPU_CORES> cores; std::array<std::unique_ptr<Kernel::PhysicalCore>, Core::Hardware::NUM_CPU_CORES> cores;
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others // Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
@ -882,10 +868,6 @@ KResourceLimit* KernelCore::GetSystemResourceLimit() {
return impl->system_resource_limit; return impl->system_resource_limit;
} }
KScopedAutoObject<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
return impl->global_handle_table->GetObject<KThread>(handle);
}
void KernelCore::AppendNewProcess(KProcess* process) { void KernelCore::AppendNewProcess(KProcess* process) {
impl->process_list.push_back(process); impl->process_list.push_back(process);
} }
@ -959,14 +941,6 @@ Kernel::KHardwareTimer& KernelCore::HardwareTimer() {
return *impl->hardware_timer; return *impl->hardware_timer;
} }
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
return *impl->exclusive_monitor;
}
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor;
}
KAutoObjectWithListContainer& KernelCore::ObjectListContainer() { KAutoObjectWithListContainer& KernelCore::ObjectListContainer() {
return *impl->global_object_list_container; return *impl->global_object_list_container;
} }
@ -1030,14 +1004,6 @@ u64 KernelCore::CreateNewUserProcessID() {
return impl->next_user_process_id++; return impl->next_user_process_id++;
} }
KHandleTable& KernelCore::GlobalHandleTable() {
return *impl->global_handle_table;
}
const KHandleTable& KernelCore::GlobalHandleTable() const {
return *impl->global_handle_table;
}
void KernelCore::RegisterCoreThread(std::size_t core_id) { void KernelCore::RegisterCoreThread(std::size_t core_id) {
impl->RegisterCoreThread(core_id); impl->RegisterCoreThread(core_id);
} }

View file

@ -116,9 +116,6 @@ public:
/// Retrieves a shared pointer to the system resource limit instance. /// Retrieves a shared pointer to the system resource limit instance.
KResourceLimit* GetSystemResourceLimit(); KResourceLimit* GetSystemResourceLimit();
/// Retrieves a shared pointer to a Thread instance within the thread wakeup handle table.
KScopedAutoObject<KThread> RetrieveThreadFromGlobalHandleTable(Handle handle) const;
/// Adds the given shared pointer to an internal list of active processes. /// Adds the given shared pointer to an internal list of active processes.
void AppendNewProcess(KProcess* process); void AppendNewProcess(KProcess* process);
@ -170,10 +167,6 @@ public:
/// Stops execution of 'id' core, in order to reschedule a new thread. /// Stops execution of 'id' core, in order to reschedule a new thread.
void PrepareReschedule(std::size_t id); void PrepareReschedule(std::size_t id);
Core::ExclusiveMonitor& GetExclusiveMonitor();
const Core::ExclusiveMonitor& GetExclusiveMonitor() const;
KAutoObjectWithListContainer& ObjectListContainer(); KAutoObjectWithListContainer& ObjectListContainer();
const KAutoObjectWithListContainer& ObjectListContainer() const; const KAutoObjectWithListContainer& ObjectListContainer() const;

View file

@ -18,13 +18,13 @@ public:
static constexpr inline u64 NullTag = 0; static constexpr inline u64 NullTag = 0;
public: public:
enum class ReceiveListCountType : u32 { enum ReceiveListCountType : u32 {
None = 0, ReceiveListCountType_None = 0,
ToMessageBuffer = 1, ReceiveListCountType_ToMessageBuffer = 1,
ToSingleBuffer = 2, ReceiveListCountType_ToSingleBuffer = 2,
CountOffset = 2, ReceiveListCountType_CountOffset = 2,
CountMax = 13, ReceiveListCountType_CountMax = 13,
}; };
private: private:
@ -591,16 +591,16 @@ public:
// Add the size of the receive list. // Add the size of the receive list.
const auto count = hdr.GetReceiveListCount(); const auto count = hdr.GetReceiveListCount();
switch (count) { switch (count) {
case MessageHeader::ReceiveListCountType::None: case MessageHeader::ReceiveListCountType_None:
break; break;
case MessageHeader::ReceiveListCountType::ToMessageBuffer: case MessageHeader::ReceiveListCountType_ToMessageBuffer:
break; break;
case MessageHeader::ReceiveListCountType::ToSingleBuffer: case MessageHeader::ReceiveListCountType_ToSingleBuffer:
msg_size += ReceiveListEntry::GetDataSize(); msg_size += ReceiveListEntry::GetDataSize();
break; break;
default: default:
msg_size += (static_cast<s32>(count) - msg_size += (static_cast<s32>(count) -
static_cast<s32>(MessageHeader::ReceiveListCountType::CountOffset)) * static_cast<s32>(MessageHeader::ReceiveListCountType_CountOffset)) *
ReceiveListEntry::GetDataSize(); ReceiveListEntry::GetDataSize();
break; break;
} }

View file

@ -118,7 +118,6 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
R_SUCCEED(); R_SUCCEED();
case InfoType::IsApplication: case InfoType::IsApplication:
LOG_WARNING(Kernel_SVC, "(STUBBED) Assuming process is application");
*result = process->IsApplication(); *result = process->IsApplication();
R_SUCCEED(); R_SUCCEED();

View file

@ -48,8 +48,7 @@ Result ReplyAndReceiveImpl(KernelCore& kernel, int32_t* out_index, uintptr_t mes
}; };
// Send the reply. // Send the reply.
R_TRY(session->SendReply()); R_TRY(session->SendReply(message, buffer_size, message_paddr));
// R_TRY(session->SendReply(message, buffer_size, message_paddr));
} }
// Receive a message. // Receive a message.
@ -85,8 +84,7 @@ Result ReplyAndReceiveImpl(KernelCore& kernel, int32_t* out_index, uintptr_t mes
if (R_SUCCEEDED(result)) { if (R_SUCCEEDED(result)) {
KServerSession* session = objs[index]->DynamicCast<KServerSession*>(); KServerSession* session = objs[index]->DynamicCast<KServerSession*>();
if (session != nullptr) { if (session != nullptr) {
// result = session->ReceiveRequest(message, buffer_size, message_paddr); result = session->ReceiveRequest(message, buffer_size, message_paddr);
result = session->ReceiveRequest();
if (ResultNotFound == result) { if (ResultNotFound == result) {
continue; continue;
} }

View file

@ -38,7 +38,9 @@ constexpr Result ResultInvalidState{ErrorModule::Kernel, 125};
constexpr Result ResultReservedUsed{ErrorModule::Kernel, 126}; constexpr Result ResultReservedUsed{ErrorModule::Kernel, 126};
constexpr Result ResultPortClosed{ErrorModule::Kernel, 131}; constexpr Result ResultPortClosed{ErrorModule::Kernel, 131};
constexpr Result ResultLimitReached{ErrorModule::Kernel, 132}; constexpr Result ResultLimitReached{ErrorModule::Kernel, 132};
constexpr Result ResultReceiveListBroken{ErrorModule::Kernel, 258};
constexpr Result ResultOutOfAddressSpace{ErrorModule::Kernel, 259}; constexpr Result ResultOutOfAddressSpace{ErrorModule::Kernel, 259};
constexpr Result ResultMessageTooLarge{ErrorModule::Kernel, 260};
constexpr Result ResultInvalidId{ErrorModule::Kernel, 519}; constexpr Result ResultInvalidId{ErrorModule::Kernel, 519};
} // namespace Kernel } // namespace Kernel

View file

@ -89,7 +89,7 @@ static void GenerateErrorReport(Core::System& system, Result error_code, const F
crash_report += fmt::format(" ESR: {:016x}\n", info.esr); crash_report += fmt::format(" ESR: {:016x}\n", info.esr);
crash_report += fmt::format(" FAR: {:016x}\n", info.far); crash_report += fmt::format(" FAR: {:016x}\n", info.far);
crash_report += "\nBacktrace:\n"; crash_report += "\nBacktrace:\n";
for (size_t i = 0; i < info.backtrace_size; i++) { for (u32 i = 0; i < std::min<u32>(info.backtrace_size, 32); i++) {
crash_report += crash_report +=
fmt::format(" Backtrace[{:02d}]: {:016x}\n", i, info.backtrace[i]); fmt::format(" Backtrace[{:02d}]: {:016x}\n", i, info.backtrace[i]);
} }

View file

@ -151,8 +151,8 @@ public:
if (manager->IsDomain()) { if (manager->IsDomain()) {
context->AddDomainObject(std::move(iface)); context->AddDomainObject(std::move(iface));
} else { } else {
kernel.ApplicationProcess()->GetResourceLimit()->Reserve( ASSERT(Kernel::GetCurrentProcess(kernel).GetResourceLimit()->Reserve(
Kernel::LimitableResource::SessionCountMax, 1); Kernel::LimitableResource::SessionCountMax, 1));
auto* session = Kernel::KSession::Create(kernel); auto* session = Kernel::KSession::Create(kernel);
session->Initialize(nullptr, 0); session->Initialize(nullptr, 0);

View file

@ -47,7 +47,7 @@ ServerManager::~ServerManager() {
m_stopped.Wait(); m_stopped.Wait();
m_threads.clear(); m_threads.clear();
// Clean up ports. // Clean up server ports.
for (const auto& [port, handler] : m_ports) { for (const auto& [port, handler] : m_ports) {
port->Close(); port->Close();
} }
@ -97,22 +97,15 @@ Result ServerManager::RegisterNamedService(const std::string& service_name,
u32 max_sessions) { u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects); ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Add the new server to sm:. // Add the new server to sm: and get the moved server port.
ASSERT(R_SUCCEEDED( Kernel::KServerPort* server_port{};
m_system.ServiceManager().RegisterService(service_name, max_sessions, handler_factory))); R_ASSERT(m_system.ServiceManager().RegisterService(std::addressof(server_port), service_name,
max_sessions, handler_factory));
// Get the registered port.
Kernel::KPort* port{};
ASSERT(
R_SUCCEEDED(m_system.ServiceManager().GetServicePort(std::addressof(port), service_name)));
// Open a new reference to the server port.
port->GetServerPort().Open();
// Begin tracking the server port. // Begin tracking the server port.
{ {
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_list_mutex};
m_ports.emplace(std::addressof(port->GetServerPort()), std::move(handler_factory)); m_ports.emplace(server_port, std::move(handler_factory));
} }
// Signal the wakeup event. // Signal the wakeup event.
@ -372,7 +365,7 @@ Result ServerManager::OnSessionEvent(Kernel::KServerSession* session,
// Try to receive a message. // Try to receive a message.
std::shared_ptr<HLERequestContext> context; std::shared_ptr<HLERequestContext> context;
rc = session->ReceiveRequest(&context, manager); rc = session->ReceiveRequestHLE(&context, manager);
// If the session has been closed, we're done. // If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed) { if (rc == Kernel::ResultSessionClosed) {

View file

@ -507,6 +507,14 @@ void SET_SYS::SetTvSettings(HLERequestContext& ctx) {
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
} }
void SET_SYS::GetDebugModeFlag(HLERequestContext& ctx) {
LOG_DEBUG(Service_SET, "called");
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push<u32>(0);
}
void SET_SYS::GetQuestFlag(HLERequestContext& ctx) { void SET_SYS::GetQuestFlag(HLERequestContext& ctx) {
LOG_WARNING(Service_SET, "(STUBBED) called"); LOG_WARNING(Service_SET, "(STUBBED) called");
@ -926,7 +934,7 @@ SET_SYS::SET_SYS(Core::System& system_) : ServiceFramework{system_, "set:sys"},
{59, &SET_SYS::SetNetworkSystemClockContext, "SetNetworkSystemClockContext"}, {59, &SET_SYS::SetNetworkSystemClockContext, "SetNetworkSystemClockContext"},
{60, &SET_SYS::IsUserSystemClockAutomaticCorrectionEnabled, "IsUserSystemClockAutomaticCorrectionEnabled"}, {60, &SET_SYS::IsUserSystemClockAutomaticCorrectionEnabled, "IsUserSystemClockAutomaticCorrectionEnabled"},
{61, &SET_SYS::SetUserSystemClockAutomaticCorrectionEnabled, "SetUserSystemClockAutomaticCorrectionEnabled"}, {61, &SET_SYS::SetUserSystemClockAutomaticCorrectionEnabled, "SetUserSystemClockAutomaticCorrectionEnabled"},
{62, nullptr, "GetDebugModeFlag"}, {62, &SET_SYS::GetDebugModeFlag, "GetDebugModeFlag"},
{63, &SET_SYS::GetPrimaryAlbumStorage, "GetPrimaryAlbumStorage"}, {63, &SET_SYS::GetPrimaryAlbumStorage, "GetPrimaryAlbumStorage"},
{64, nullptr, "SetPrimaryAlbumStorage"}, {64, nullptr, "SetPrimaryAlbumStorage"},
{65, nullptr, "GetUsb30EnableFlag"}, {65, nullptr, "GetUsb30EnableFlag"},
@ -1143,6 +1151,8 @@ void SET_SYS::StoreSettings() {
} }
void SET_SYS::StoreSettingsThreadFunc(std::stop_token stop_token) { void SET_SYS::StoreSettingsThreadFunc(std::stop_token stop_token) {
Common::SetCurrentThreadName("SettingsStore");
while (Common::StoppableTimedWait(stop_token, std::chrono::minutes(1))) { while (Common::StoppableTimedWait(stop_token, std::chrono::minutes(1))) {
std::scoped_lock l{m_save_needed_mutex}; std::scoped_lock l{m_save_needed_mutex};
if (!std::exchange(m_save_needed, false)) { if (!std::exchange(m_save_needed, false)) {

View file

@ -98,6 +98,7 @@ private:
void GetSettingsItemValue(HLERequestContext& ctx); void GetSettingsItemValue(HLERequestContext& ctx);
void GetTvSettings(HLERequestContext& ctx); void GetTvSettings(HLERequestContext& ctx);
void SetTvSettings(HLERequestContext& ctx); void SetTvSettings(HLERequestContext& ctx);
void GetDebugModeFlag(HLERequestContext& ctx);
void GetQuestFlag(HLERequestContext& ctx); void GetQuestFlag(HLERequestContext& ctx);
void GetDeviceTimeZoneLocationName(HLERequestContext& ctx); void GetDeviceTimeZoneLocationName(HLERequestContext& ctx);
void SetDeviceTimeZoneLocationName(HLERequestContext& ctx); void SetDeviceTimeZoneLocationName(HLERequestContext& ctx);

View file

@ -29,8 +29,7 @@ ServiceManager::ServiceManager(Kernel::KernelCore& kernel_) : kernel{kernel_} {
ServiceManager::~ServiceManager() { ServiceManager::~ServiceManager() {
for (auto& [name, port] : service_ports) { for (auto& [name, port] : service_ports) {
port->GetClientPort().Close(); port->Close();
port->GetServerPort().Close();
} }
if (deferral_event) { if (deferral_event) {
@ -50,8 +49,8 @@ static Result ValidateServiceName(const std::string& name) {
return ResultSuccess; return ResultSuccess;
} }
Result ServiceManager::RegisterService(std::string name, u32 max_sessions, Result ServiceManager::RegisterService(Kernel::KServerPort** out_server_port, std::string name,
SessionRequestHandlerFactory handler) { u32 max_sessions, SessionRequestHandlerFactory handler) {
R_TRY(ValidateServiceName(name)); R_TRY(ValidateServiceName(name));
std::scoped_lock lk{lock}; std::scoped_lock lk{lock};
@ -66,13 +65,17 @@ Result ServiceManager::RegisterService(std::string name, u32 max_sessions,
// Register the port. // Register the port.
Kernel::KPort::Register(kernel, port); Kernel::KPort::Register(kernel, port);
service_ports.emplace(name, port); service_ports.emplace(name, std::addressof(port->GetClientPort()));
registered_services.emplace(name, handler); registered_services.emplace(name, handler);
if (deferral_event) { if (deferral_event) {
deferral_event->Signal(); deferral_event->Signal();
} }
return ResultSuccess; // Set our output.
*out_server_port = std::addressof(port->GetServerPort());
// We succeeded.
R_SUCCEED();
} }
Result ServiceManager::UnregisterService(const std::string& name) { Result ServiceManager::UnregisterService(const std::string& name) {
@ -91,7 +94,8 @@ Result ServiceManager::UnregisterService(const std::string& name) {
return ResultSuccess; return ResultSuccess;
} }
Result ServiceManager::GetServicePort(Kernel::KPort** out_port, const std::string& name) { Result ServiceManager::GetServicePort(Kernel::KClientPort** out_client_port,
const std::string& name) {
R_TRY(ValidateServiceName(name)); R_TRY(ValidateServiceName(name));
std::scoped_lock lk{lock}; std::scoped_lock lk{lock};
@ -101,7 +105,7 @@ Result ServiceManager::GetServicePort(Kernel::KPort** out_port, const std::strin
return Service::SM::ResultNotRegistered; return Service::SM::ResultNotRegistered;
} }
*out_port = it->second; *out_client_port = it->second;
return ResultSuccess; return ResultSuccess;
} }
@ -172,8 +176,8 @@ Result SM::GetServiceImpl(Kernel::KClientSession** out_client_session, HLEReques
std::string name(PopServiceName(rp)); std::string name(PopServiceName(rp));
// Find the named port. // Find the named port.
Kernel::KPort* port{}; Kernel::KClientPort* client_port{};
auto port_result = service_manager.GetServicePort(&port, name); auto port_result = service_manager.GetServicePort(&client_port, name);
if (port_result == Service::SM::ResultInvalidServiceName) { if (port_result == Service::SM::ResultInvalidServiceName) {
LOG_ERROR(Service_SM, "Invalid service name '{}'", name); LOG_ERROR(Service_SM, "Invalid service name '{}'", name);
return Service::SM::ResultInvalidServiceName; return Service::SM::ResultInvalidServiceName;
@ -187,7 +191,7 @@ Result SM::GetServiceImpl(Kernel::KClientSession** out_client_session, HLEReques
// Create a new session. // Create a new session.
Kernel::KClientSession* session{}; Kernel::KClientSession* session{};
if (const auto result = port->GetClientPort().CreateSession(&session); result.IsError()) { if (const auto result = client_port->CreateSession(&session); result.IsError()) {
LOG_ERROR(Service_SM, "called service={} -> error 0x{:08X}", name, result.raw); LOG_ERROR(Service_SM, "called service={} -> error 0x{:08X}", name, result.raw);
return result; return result;
} }
@ -221,7 +225,9 @@ void SM::RegisterServiceImpl(HLERequestContext& ctx, std::string name, u32 max_s
LOG_DEBUG(Service_SM, "called with name={}, max_session_count={}, is_light={}", name, LOG_DEBUG(Service_SM, "called with name={}, max_session_count={}, is_light={}", name,
max_session_count, is_light); max_session_count, is_light);
if (const auto result = service_manager.RegisterService(name, max_session_count, nullptr); Kernel::KServerPort* server_port{};
if (const auto result = service_manager.RegisterService(std::addressof(server_port), name,
max_session_count, nullptr);
result.IsError()) { result.IsError()) {
LOG_ERROR(Service_SM, "failed to register service with error_code={:08X}", result.raw); LOG_ERROR(Service_SM, "failed to register service with error_code={:08X}", result.raw);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
@ -229,13 +235,9 @@ void SM::RegisterServiceImpl(HLERequestContext& ctx, std::string name, u32 max_s
return; return;
} }
auto* port = Kernel::KPort::Create(kernel);
port->Initialize(ServerSessionCountMax, is_light, 0);
SCOPE_EXIT({ port->GetClientPort().Close(); });
IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles}; IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.PushMoveObjects(port->GetServerPort()); rb.PushMoveObjects(server_port);
} }
void SM::UnregisterService(HLERequestContext& ctx) { void SM::UnregisterService(HLERequestContext& ctx) {

View file

@ -56,10 +56,10 @@ public:
explicit ServiceManager(Kernel::KernelCore& kernel_); explicit ServiceManager(Kernel::KernelCore& kernel_);
~ServiceManager(); ~ServiceManager();
Result RegisterService(std::string name, u32 max_sessions, Result RegisterService(Kernel::KServerPort** out_server_port, std::string name,
SessionRequestHandlerFactory handler_factory); u32 max_sessions, SessionRequestHandlerFactory handler_factory);
Result UnregisterService(const std::string& name); Result UnregisterService(const std::string& name);
Result GetServicePort(Kernel::KPort** out_port, const std::string& name); Result GetServicePort(Kernel::KClientPort** out_client_port, const std::string& name);
template <Common::DerivedFrom<SessionRequestHandler> T> template <Common::DerivedFrom<SessionRequestHandler> T>
std::shared_ptr<T> GetService(const std::string& service_name) const { std::shared_ptr<T> GetService(const std::string& service_name) const {
@ -84,7 +84,7 @@ private:
/// Map of registered services, retrieved using GetServicePort. /// Map of registered services, retrieved using GetServicePort.
std::mutex lock; std::mutex lock;
std::unordered_map<std::string, SessionRequestHandlerFactory> registered_services; std::unordered_map<std::string, SessionRequestHandlerFactory> registered_services;
std::unordered_map<std::string, Kernel::KPort*> service_ports; std::unordered_map<std::string, Kernel::KClientPort*> service_ports;
/// Kernel context /// Kernel context
Kernel::KernelCore& kernel; Kernel::KernelCore& kernel;

View file

@ -28,7 +28,6 @@ void Controller::ConvertCurrentObjectToDomain(HLERequestContext& ctx) {
void Controller::CloneCurrentObject(HLERequestContext& ctx) { void Controller::CloneCurrentObject(HLERequestContext& ctx) {
LOG_DEBUG(Service, "called"); LOG_DEBUG(Service, "called");
auto& process = *ctx.GetThread().GetOwnerProcess();
auto session_manager = ctx.GetManager(); auto session_manager = ctx.GetManager();
// FIXME: this is duplicated from the SVC, it should just call it instead // FIXME: this is duplicated from the SVC, it should just call it instead
@ -36,11 +35,11 @@ void Controller::CloneCurrentObject(HLERequestContext& ctx) {
// Reserve a new session from the process resource limit. // Reserve a new session from the process resource limit.
Kernel::KScopedResourceReservation session_reservation( Kernel::KScopedResourceReservation session_reservation(
&process, Kernel::LimitableResource::SessionCountMax); Kernel::GetCurrentProcessPointer(kernel), Kernel::LimitableResource::SessionCountMax);
ASSERT(session_reservation.Succeeded()); ASSERT(session_reservation.Succeeded());
// Create the session. // Create the session.
Kernel::KSession* session = Kernel::KSession::Create(system.Kernel()); Kernel::KSession* session = Kernel::KSession::Create(kernel);
ASSERT(session != nullptr); ASSERT(session != nullptr);
// Initialize the session. // Initialize the session.
@ -50,7 +49,7 @@ void Controller::CloneCurrentObject(HLERequestContext& ctx) {
session_reservation.Commit(); session_reservation.Commit();
// Register the session. // Register the session.
Kernel::KSession::Register(system.Kernel(), session); Kernel::KSession::Register(kernel, session);
// Register with server manager. // Register with server manager.
session_manager->GetServerManager().RegisterSession(&session->GetServerSession(), session_manager->GetServerManager().RegisterSession(&session->GetServerSession(),

View file

@ -129,9 +129,10 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
} }
metadata.Print(); metadata.Print();
// Enable NCE only for programs with 39-bit address space. // Enable NCE only for applications with 39-bit address space.
const bool is_39bit = const bool is_39bit =
metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit; metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit;
const bool is_application = metadata.GetPoolPartition() == FileSys::PoolPartition::Application;
Settings::SetNceEnabled(is_39bit); Settings::SetNceEnabled(is_39bit);
const std::array static_modules = {"rtld", "main", "subsdk0", "subsdk1", "subsdk2", const std::array static_modules = {"rtld", "main", "subsdk0", "subsdk1", "subsdk2",
@ -147,7 +148,7 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
const auto GetPatcher = [&](size_t i) -> Core::NCE::Patcher* { const auto GetPatcher = [&](size_t i) -> Core::NCE::Patcher* {
#ifdef HAS_NCE #ifdef HAS_NCE
if (Settings::IsNceEnabled()) { if (is_application && Settings::IsNceEnabled()) {
return &module_patchers[i]; return &module_patchers[i];
} }
#endif #endif
@ -175,7 +176,7 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
// Enable direct memory mapping in case of NCE. // Enable direct memory mapping in case of NCE.
const u64 fastmem_base = [&]() -> size_t { const u64 fastmem_base = [&]() -> size_t {
if (Settings::IsNceEnabled()) { if (is_application && Settings::IsNceEnabled()) {
auto& buffer = system.DeviceMemory().buffer; auto& buffer = system.DeviceMemory().buffer;
buffer.EnableDirectMappedAddress(); buffer.EnableDirectMappedAddress();
return reinterpret_cast<u64>(buffer.VirtualBasePointer()); return reinterpret_cast<u64>(buffer.VirtualBasePointer());

View file

@ -45,7 +45,13 @@ struct Memory::Impl {
void SetCurrentPageTable(Kernel::KProcess& process) { void SetCurrentPageTable(Kernel::KProcess& process) {
current_page_table = &process.GetPageTable().GetImpl(); current_page_table = &process.GetPageTable().GetImpl();
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
if (std::addressof(process) == system.ApplicationProcess() &&
Settings::IsFastmemEnabled()) {
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
} else {
current_page_table->fastmem_arena = nullptr;
}
} }
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
@ -57,7 +63,7 @@ struct Memory::Impl {
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target, MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target,
Common::PageType::Memory); Common::PageType::Memory);
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Map(GetInteger(base), system.DeviceMemory().buffer.Map(GetInteger(base),
GetInteger(target) - DramMemoryMap::Base, size, perms); GetInteger(target) - DramMemoryMap::Base, size, perms);
} }
@ -69,7 +75,7 @@ struct Memory::Impl {
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0, MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0,
Common::PageType::Unmapped); Common::PageType::Unmapped);
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Unmap(GetInteger(base), size); system.DeviceMemory().buffer.Unmap(GetInteger(base), size);
} }
} }
@ -79,7 +85,7 @@ struct Memory::Impl {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr); ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr);
if (!Settings::IsFastmemEnabled()) { if (!current_page_table->fastmem_arena) {
return; return;
} }
@ -88,11 +94,6 @@ struct Memory::Impl {
const bool is_x = const bool is_x =
True(perms & Common::MemoryPermission::Execute) && Settings::IsNceEnabled(); True(perms & Common::MemoryPermission::Execute) && Settings::IsNceEnabled();
if (!current_page_table) {
system.DeviceMemory().buffer.Protect(vaddr, size, is_r, is_w, is_x);
return;
}
u64 protect_bytes{}; u64 protect_bytes{};
u64 protect_begin{}; u64 protect_begin{};
for (u64 addr = vaddr; addr < vaddr + size; addr += YUZU_PAGESIZE) { for (u64 addr = vaddr; addr < vaddr + size; addr += YUZU_PAGESIZE) {
@ -239,7 +240,7 @@ struct Memory::Impl {
bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped, bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped,
auto on_memory, auto on_rasterizer, auto increment) { auto on_memory, auto on_rasterizer, auto increment) {
const auto& page_table = system.ApplicationProcess()->GetPageTable().GetImpl(); const auto& page_table = *current_page_table;
std::size_t remaining_size = size; std::size_t remaining_size = size;
std::size_t page_index = addr >> YUZU_PAGEBITS; std::size_t page_index = addr >> YUZU_PAGEBITS;
std::size_t page_offset = addr & YUZU_PAGEMASK; std::size_t page_offset = addr & YUZU_PAGEMASK;
@ -484,7 +485,7 @@ struct Memory::Impl {
return; return;
} }
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Protect(vaddr, size, !debug, !debug); system.DeviceMemory().buffer.Protect(vaddr, size, !debug, !debug);
} }
@ -541,7 +542,7 @@ struct Memory::Impl {
return; return;
} }
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
const bool is_read_enable = const bool is_read_enable =
!Settings::values.use_reactive_flushing.GetValue() || !cached; !Settings::values.use_reactive_flushing.GetValue() || !cached;
system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached); system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached);
@ -886,8 +887,7 @@ void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress
} }
bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const { bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const {
const Kernel::KProcess& process = *system.ApplicationProcess(); const auto& page_table = *impl->current_page_table;
const auto& page_table = process.GetPageTable().GetImpl();
const size_t page = vaddr >> YUZU_PAGEBITS; const size_t page = vaddr >> YUZU_PAGEBITS;
if (page >= page_table.pointers.size()) { if (page >= page_table.pointers.size()) {
return false; return false;

View file

@ -586,14 +586,22 @@ void Maxwell3D::ProcessQueryCondition() {
} }
void Maxwell3D::ProcessCounterReset() { void Maxwell3D::ProcessCounterReset() {
switch (regs.clear_report_value) { const auto query_type = [clear_report = regs.clear_report_value]() {
case Regs::ClearReport::ZPassPixelCount: switch (clear_report) {
rasterizer->ResetCounter(VideoCommon::QueryType::ZPassPixelCount64); case Tegra::Engines::Maxwell3D::Regs::ClearReport::ZPassPixelCount:
break; return VideoCommon::QueryType::ZPassPixelCount64;
default: case Tegra::Engines::Maxwell3D::Regs::ClearReport::StreamingPrimitivesSucceeded:
LOG_DEBUG(Render_OpenGL, "Unimplemented counter reset={}", regs.clear_report_value); return VideoCommon::QueryType::StreamingPrimitivesSucceeded;
break; case Tegra::Engines::Maxwell3D::Regs::ClearReport::PrimitivesGenerated:
} return VideoCommon::QueryType::PrimitivesGenerated;
case Tegra::Engines::Maxwell3D::Regs::ClearReport::VtgPrimitivesOut:
return VideoCommon::QueryType::VtgPrimitivesOut;
default:
LOG_DEBUG(HW_GPU, "Unimplemented counter reset={}", clear_report);
return VideoCommon::QueryType::Payload;
}
}();
rasterizer->ResetCounter(query_type);
} }
void Maxwell3D::ProcessSyncPoint() { void Maxwell3D::ProcessSyncPoint() {

View file

@ -28,8 +28,11 @@
namespace VideoCore { namespace VideoCore {
enum class QueryType { enum class QueryType {
SamplesPassed, SamplesPassed,
PrimitivesGenerated,
TfbPrimitivesWritten,
Count,
}; };
constexpr std::size_t NumQueryTypes = 1; constexpr std::size_t NumQueryTypes = static_cast<size_t>(QueryType::Count);
} // namespace VideoCore } // namespace VideoCore
namespace VideoCommon { namespace VideoCommon {
@ -44,15 +47,6 @@ public:
explicit CounterStreamBase(QueryCache& cache_, VideoCore::QueryType type_) explicit CounterStreamBase(QueryCache& cache_, VideoCore::QueryType type_)
: cache{cache_}, type{type_} {} : cache{cache_}, type{type_} {}
/// Updates the state of the stream, enabling or disabling as needed.
void Update(bool enabled) {
if (enabled) {
Enable();
} else {
Disable();
}
}
/// Resets the stream to zero. It doesn't disable the query after resetting. /// Resets the stream to zero. It doesn't disable the query after resetting.
void Reset() { void Reset() {
if (current) { if (current) {
@ -80,7 +74,6 @@ public:
return current != nullptr; return current != nullptr;
} }
private:
/// Enables the stream. /// Enables the stream.
void Enable() { void Enable() {
if (current) { if (current) {
@ -97,6 +90,7 @@ private:
last = std::exchange(current, nullptr); last = std::exchange(current, nullptr);
} }
private:
QueryCache& cache; QueryCache& cache;
const VideoCore::QueryType type; const VideoCore::QueryType type;
@ -112,8 +106,14 @@ public:
: rasterizer{rasterizer_}, : rasterizer{rasterizer_},
// Use reinterpret_cast instead of static_cast as workaround for // Use reinterpret_cast instead of static_cast as workaround for
// UBSan bug (https://github.com/llvm/llvm-project/issues/59060) // UBSan bug (https://github.com/llvm/llvm-project/issues/59060)
cpu_memory{cpu_memory_}, streams{{CounterStream{reinterpret_cast<QueryCache&>(*this), cpu_memory{cpu_memory_}, streams{{
VideoCore::QueryType::SamplesPassed}}} { {CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::SamplesPassed}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::PrimitivesGenerated}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::TfbPrimitivesWritten}},
}} {
(void)slot_async_jobs.insert(); // Null value (void)slot_async_jobs.insert(); // Null value
} }
@ -157,12 +157,11 @@ public:
AsyncFlushQuery(query, timestamp, lock); AsyncFlushQuery(query, timestamp, lock);
} }
/// Updates counters from GPU state. Expected to be called once per draw, clear or dispatch. /// Enables all available GPU counters
void UpdateCounters() { void EnableCounters() {
std::unique_lock lock{mutex}; std::unique_lock lock{mutex};
if (maxwell3d) { for (auto& stream : streams) {
const auto& regs = maxwell3d->regs; stream.Enable();
Stream(VideoCore::QueryType::SamplesPassed).Update(regs.zpass_pixel_count_enable);
} }
} }
@ -176,7 +175,7 @@ public:
void DisableStreams() { void DisableStreams() {
std::unique_lock lock{mutex}; std::unique_lock lock{mutex};
for (auto& stream : streams) { for (auto& stream : streams) {
stream.Update(false); stream.Disable();
} }
} }
@ -353,7 +352,7 @@ private:
std::shared_ptr<std::vector<AsyncJobId>> uncommitted_flushes{}; std::shared_ptr<std::vector<AsyncJobId>> uncommitted_flushes{};
std::list<std::shared_ptr<std::vector<AsyncJobId>>> committed_flushes; std::list<std::shared_ptr<std::vector<AsyncJobId>>> committed_flushes;
}; }; // namespace VideoCommon
template <class QueryCache, class HostCounter> template <class QueryCache, class HostCounter>
class HostCounterBase { class HostCounterBase {

View file

@ -58,6 +58,9 @@ Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rast
glObjectLabel(GL_BUFFER, buffer.handle, static_cast<GLsizei>(name.size()), name.data()); glObjectLabel(GL_BUFFER, buffer.handle, static_cast<GLsizei>(name.size()), name.data());
} }
glNamedBufferData(buffer.handle, SizeBytes(), nullptr, GL_DYNAMIC_DRAW); glNamedBufferData(buffer.handle, SizeBytes(), nullptr, GL_DYNAMIC_DRAW);
if (runtime.has_unified_vertex_buffers) {
glGetNamedBufferParameterui64vNV(buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &address);
}
} }
void Buffer::ImmediateUpload(size_t offset, std::span<const u8> data) noexcept { void Buffer::ImmediateUpload(size_t offset, std::span<const u8> data) noexcept {
@ -109,6 +112,7 @@ BufferCacheRuntime::BufferCacheRuntime(const Device& device_,
: device{device_}, staging_buffer_pool{staging_buffer_pool_}, : device{device_}, staging_buffer_pool{staging_buffer_pool_},
has_fast_buffer_sub_data{device.HasFastBufferSubData()}, has_fast_buffer_sub_data{device.HasFastBufferSubData()},
use_assembly_shaders{device.UseAssemblyShaders()}, use_assembly_shaders{device.UseAssemblyShaders()},
has_unified_vertex_buffers{device.HasVertexBufferUnifiedMemory()},
stream_buffer{has_fast_buffer_sub_data ? std::nullopt : std::make_optional<StreamBuffer>()} { stream_buffer{has_fast_buffer_sub_data ? std::nullopt : std::make_optional<StreamBuffer>()} {
GLint gl_max_attributes; GLint gl_max_attributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &gl_max_attributes); glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &gl_max_attributes);
@ -210,8 +214,14 @@ void BufferCacheRuntime::ClearBuffer(Buffer& dest_buffer, u32 offset, size_t siz
} }
void BufferCacheRuntime::BindIndexBuffer(Buffer& buffer, u32 offset, u32 size) { void BufferCacheRuntime::BindIndexBuffer(Buffer& buffer, u32 offset, u32 size) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.Handle()); if (has_unified_vertex_buffers) {
index_buffer_offset = offset; buffer.MakeResident(GL_READ_ONLY);
glBufferAddressRangeNV(GL_ELEMENT_ARRAY_ADDRESS_NV, 0, buffer.HostGpuAddr() + offset,
static_cast<GLsizeiptr>(Common::AlignUp(size, 4)));
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.Handle());
index_buffer_offset = offset;
}
} }
void BufferCacheRuntime::BindVertexBuffer(u32 index, Buffer& buffer, u32 offset, u32 size, void BufferCacheRuntime::BindVertexBuffer(u32 index, Buffer& buffer, u32 offset, u32 size,
@ -219,8 +229,15 @@ void BufferCacheRuntime::BindVertexBuffer(u32 index, Buffer& buffer, u32 offset,
if (index >= max_attributes) { if (index >= max_attributes) {
return; return;
} }
glBindVertexBuffer(index, buffer.Handle(), static_cast<GLintptr>(offset), if (has_unified_vertex_buffers) {
static_cast<GLsizei>(stride)); buffer.MakeResident(GL_READ_ONLY);
glBindVertexBuffer(index, 0, 0, static_cast<GLsizei>(stride));
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, index,
buffer.HostGpuAddr() + offset, static_cast<GLsizeiptr>(size));
} else {
glBindVertexBuffer(index, buffer.Handle(), static_cast<GLintptr>(offset),
static_cast<GLsizei>(stride));
}
} }
void BufferCacheRuntime::BindVertexBuffers(VideoCommon::HostBindings<Buffer>& bindings) { void BufferCacheRuntime::BindVertexBuffers(VideoCommon::HostBindings<Buffer>& bindings) {
@ -233,9 +250,23 @@ void BufferCacheRuntime::BindVertexBuffers(VideoCommon::HostBindings<Buffer>& bi
[](u64 stride) { return static_cast<GLsizei>(stride); }); [](u64 stride) { return static_cast<GLsizei>(stride); });
const u32 count = const u32 count =
std::min(static_cast<u32>(bindings.buffers.size()), max_attributes - bindings.min_index); std::min(static_cast<u32>(bindings.buffers.size()), max_attributes - bindings.min_index);
glBindVertexBuffers(bindings.min_index, static_cast<GLsizei>(count), buffer_handles.data(), if (has_unified_vertex_buffers) {
reinterpret_cast<const GLintptr*>(bindings.offsets.data()), for (u32 index = 0; index < count; ++index) {
buffer_strides.data()); Buffer& buffer = *bindings.buffers[index];
buffer.MakeResident(GL_READ_ONLY);
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, bindings.min_index + index,
buffer.HostGpuAddr() + bindings.offsets[index],
static_cast<GLsizeiptr>(bindings.sizes[index]));
}
static constexpr std::array<size_t, 32> ZEROS{};
glBindVertexBuffers(bindings.min_index, static_cast<GLsizei>(count),
reinterpret_cast<const GLuint*>(ZEROS.data()),
reinterpret_cast<const GLintptr*>(ZEROS.data()), buffer_strides.data());
} else {
glBindVertexBuffers(bindings.min_index, static_cast<GLsizei>(count), buffer_handles.data(),
reinterpret_cast<const GLintptr*>(bindings.offsets.data()),
buffer_strides.data());
}
} }
void BufferCacheRuntime::BindUniformBuffer(size_t stage, u32 binding_index, Buffer& buffer, void BufferCacheRuntime::BindUniformBuffer(size_t stage, u32 binding_index, Buffer& buffer,

View file

@ -209,6 +209,7 @@ private:
bool has_fast_buffer_sub_data = false; bool has_fast_buffer_sub_data = false;
bool use_assembly_shaders = false; bool use_assembly_shaders = false;
bool has_unified_vertex_buffers = false;
bool use_storage_buffers = false; bool use_storage_buffers = false;

View file

@ -200,6 +200,7 @@ Device::Device(Core::Frontend::EmuWindow& emu_window) {
has_broken_texture_view_formats = is_amd || (!is_linux && is_intel); has_broken_texture_view_formats = is_amd || (!is_linux && is_intel);
has_nv_viewport_array2 = GLAD_GL_NV_viewport_array2; has_nv_viewport_array2 = GLAD_GL_NV_viewport_array2;
has_derivative_control = GLAD_GL_ARB_derivative_control; has_derivative_control = GLAD_GL_ARB_derivative_control;
has_vertex_buffer_unified_memory = GLAD_GL_NV_vertex_buffer_unified_memory;
has_debugging_tool_attached = IsDebugToolAttached(extensions); has_debugging_tool_attached = IsDebugToolAttached(extensions);
has_depth_buffer_float = HasExtension(extensions, "GL_NV_depth_buffer_float"); has_depth_buffer_float = HasExtension(extensions, "GL_NV_depth_buffer_float");
has_geometry_shader_passthrough = GLAD_GL_NV_geometry_shader_passthrough; has_geometry_shader_passthrough = GLAD_GL_NV_geometry_shader_passthrough;

View file

@ -72,6 +72,10 @@ public:
return has_texture_shadow_lod; return has_texture_shadow_lod;
} }
bool HasVertexBufferUnifiedMemory() const {
return has_vertex_buffer_unified_memory;
}
bool HasASTC() const { bool HasASTC() const {
return has_astc; return has_astc;
} }
@ -211,6 +215,7 @@ private:
bool has_vertex_viewport_layer{}; bool has_vertex_viewport_layer{};
bool has_image_load_formatted{}; bool has_image_load_formatted{};
bool has_texture_shadow_lod{}; bool has_texture_shadow_lod{};
bool has_vertex_buffer_unified_memory{};
bool has_astc{}; bool has_astc{};
bool has_variable_aoffi{}; bool has_variable_aoffi{};
bool has_component_indexing_bug{}; bool has_component_indexing_bug{};

View file

@ -18,16 +18,27 @@ namespace OpenGL {
namespace { namespace {
constexpr std::array<GLenum, VideoCore::NumQueryTypes> QueryTargets = {GL_SAMPLES_PASSED};
constexpr GLenum GetTarget(VideoCore::QueryType type) { constexpr GLenum GetTarget(VideoCore::QueryType type) {
return QueryTargets[static_cast<std::size_t>(type)]; switch (type) {
case VideoCore::QueryType::SamplesPassed:
return GL_SAMPLES_PASSED;
case VideoCore::QueryType::PrimitivesGenerated:
return GL_PRIMITIVES_GENERATED;
case VideoCore::QueryType::TfbPrimitivesWritten:
return GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN;
default:
break;
}
UNIMPLEMENTED_MSG("Query type {}", type);
return 0;
} }
} // Anonymous namespace } // Anonymous namespace
QueryCache::QueryCache(RasterizerOpenGL& rasterizer_, Core::Memory::Memory& cpu_memory_) QueryCache::QueryCache(RasterizerOpenGL& rasterizer_, Core::Memory::Memory& cpu_memory_)
: QueryCacheLegacy(rasterizer_, cpu_memory_), gl_rasterizer{rasterizer_} {} : QueryCacheLegacy(rasterizer_, cpu_memory_), gl_rasterizer{rasterizer_} {
EnableCounters();
}
QueryCache::~QueryCache() = default; QueryCache::~QueryCache() = default;
@ -103,13 +114,13 @@ u64 CachedQuery::Flush([[maybe_unused]] bool async) {
auto& stream = cache->Stream(type); auto& stream = cache->Stream(type);
const bool slice_counter = WaitPending() && stream.IsEnabled(); const bool slice_counter = WaitPending() && stream.IsEnabled();
if (slice_counter) { if (slice_counter) {
stream.Update(false); stream.Disable();
} }
auto result = VideoCommon::CachedQueryBase<HostCounter>::Flush(); auto result = VideoCommon::CachedQueryBase<HostCounter>::Flush();
if (slice_counter) { if (slice_counter) {
stream.Update(true); stream.Enable();
} }
return result; return result;

View file

@ -51,6 +51,22 @@ constexpr size_t NUM_SUPPORTED_VERTEX_ATTRIBUTES = 16;
void oglEnable(GLenum cap, bool state) { void oglEnable(GLenum cap, bool state) {
(state ? glEnable : glDisable)(cap); (state ? glEnable : glDisable)(cap);
} }
std::optional<VideoCore::QueryType> MaxwellToVideoCoreQuery(VideoCommon::QueryType type) {
switch (type) {
case VideoCommon::QueryType::PrimitivesGenerated:
case VideoCommon::QueryType::VtgPrimitivesOut:
return VideoCore::QueryType::PrimitivesGenerated;
case VideoCommon::QueryType::ZPassPixelCount64:
return VideoCore::QueryType::SamplesPassed;
case VideoCommon::QueryType::StreamingPrimitivesSucceeded:
// case VideoCommon::QueryType::StreamingByteCount:
// TODO: StreamingByteCount = StreamingPrimitivesSucceeded * num_verts * vert_stride
return VideoCore::QueryType::TfbPrimitivesWritten;
default:
return std::nullopt;
}
}
} // Anonymous namespace } // Anonymous namespace
RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_, RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
@ -162,14 +178,18 @@ void RasterizerOpenGL::Clear(u32 layer_count) {
SyncFramebufferSRGB(); SyncFramebufferSRGB();
} }
if (regs.clear_surface.Z) { if (regs.clear_surface.Z) {
ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear Z but buffer is not enabled!"); if (regs.zeta_enable != 0) {
LOG_DEBUG(Render_OpenGL, "Tried to clear Z but buffer is not enabled!");
}
use_depth = true; use_depth = true;
state_tracker.NotifyDepthMask(); state_tracker.NotifyDepthMask();
glDepthMask(GL_TRUE); glDepthMask(GL_TRUE);
} }
if (regs.clear_surface.S) { if (regs.clear_surface.S) {
ASSERT_MSG(regs.zeta_enable, "Tried to clear stencil but buffer is not enabled!"); if (regs.zeta_enable) {
LOG_DEBUG(Render_OpenGL, "Tried to clear stencil but buffer is not enabled!");
}
use_stencil = true; use_stencil = true;
} }
@ -212,7 +232,6 @@ void RasterizerOpenGL::PrepareDraw(bool is_indexed, Func&& draw_func) {
SCOPE_EXIT({ gpu.TickWork(); }); SCOPE_EXIT({ gpu.TickWork(); });
gpu_memory->FlushCaching(); gpu_memory->FlushCaching();
query_cache.UpdateCounters();
GraphicsPipeline* const pipeline{shader_cache.CurrentGraphicsPipeline()}; GraphicsPipeline* const pipeline{shader_cache.CurrentGraphicsPipeline()};
if (!pipeline) { if (!pipeline) {
@ -330,7 +349,6 @@ void RasterizerOpenGL::DrawTexture() {
MICROPROFILE_SCOPE(OpenGL_Drawing); MICROPROFILE_SCOPE(OpenGL_Drawing);
SCOPE_EXIT({ gpu.TickWork(); }); SCOPE_EXIT({ gpu.TickWork(); });
query_cache.UpdateCounters();
texture_cache.SynchronizeGraphicsDescriptors(); texture_cache.SynchronizeGraphicsDescriptors();
texture_cache.UpdateRenderTargets(false); texture_cache.UpdateRenderTargets(false);
@ -397,21 +415,28 @@ void RasterizerOpenGL::DispatchCompute() {
} }
void RasterizerOpenGL::ResetCounter(VideoCommon::QueryType type) { void RasterizerOpenGL::ResetCounter(VideoCommon::QueryType type) {
if (type == VideoCommon::QueryType::ZPassPixelCount64) { const auto query_cache_type = MaxwellToVideoCoreQuery(type);
query_cache.ResetCounter(VideoCore::QueryType::SamplesPassed); if (!query_cache_type.has_value()) {
UNIMPLEMENTED_MSG("Reset query type: {}", type);
return;
} }
query_cache.ResetCounter(*query_cache_type);
} }
void RasterizerOpenGL::Query(GPUVAddr gpu_addr, VideoCommon::QueryType type, void RasterizerOpenGL::Query(GPUVAddr gpu_addr, VideoCommon::QueryType type,
VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport) { VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport) {
if (type == VideoCommon::QueryType::ZPassPixelCount64) { const auto query_cache_type = MaxwellToVideoCoreQuery(type);
if (True(flags & VideoCommon::QueryPropertiesFlags::HasTimeout)) { if (!query_cache_type.has_value()) {
query_cache.Query(gpu_addr, VideoCore::QueryType::SamplesPassed, {gpu.GetTicks()}); return QueryFallback(gpu_addr, type, flags, payload, subreport);
} else {
query_cache.Query(gpu_addr, VideoCore::QueryType::SamplesPassed, std::nullopt);
}
return;
} }
const bool has_timeout = True(flags & VideoCommon::QueryPropertiesFlags::HasTimeout);
const auto timestamp = has_timeout ? std::optional<u64>{gpu.GetTicks()} : std::nullopt;
query_cache.Query(gpu_addr, *query_cache_type, timestamp);
}
void RasterizerOpenGL::QueryFallback(GPUVAddr gpu_addr, VideoCommon::QueryType type,
VideoCommon::QueryPropertiesFlags flags, u32 payload,
u32 subreport) {
if (type != VideoCommon::QueryType::Payload) { if (type != VideoCommon::QueryType::Payload) {
payload = 1u; payload = 1u;
} }
@ -1294,15 +1319,13 @@ void RasterizerOpenGL::BeginTransformFeedback(GraphicsPipeline* program, GLenum
program->ConfigureTransformFeedback(); program->ConfigureTransformFeedback();
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderType::TessellationInit) || UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderType::TessellationInit) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderType::Tessellation) || regs.IsShaderConfigEnabled(Maxwell::ShaderType::Tessellation));
regs.IsShaderConfigEnabled(Maxwell::ShaderType::Geometry));
UNIMPLEMENTED_IF(primitive_mode != GL_POINTS);
// We may have to call BeginTransformFeedbackNV here since they seem to call different // We may have to call BeginTransformFeedbackNV here since they seem to call different
// implementations on Nvidia's driver (the pointer is different) but we are using // implementations on Nvidia's driver (the pointer is different) but we are using
// ARB_transform_feedback3 features with NV_transform_feedback interactions and the ARB // ARB_transform_feedback3 features with NV_transform_feedback interactions and the ARB
// extension doesn't define BeginTransformFeedback (without NV) interactions. It just works. // extension doesn't define BeginTransformFeedback (without NV) interactions. It just works.
glBeginTransformFeedback(GL_POINTS); glBeginTransformFeedback(primitive_mode);
} }
void RasterizerOpenGL::EndTransformFeedback() { void RasterizerOpenGL::EndTransformFeedback() {

View file

@ -225,6 +225,9 @@ private:
/// End a transform feedback /// End a transform feedback
void EndTransformFeedback(); void EndTransformFeedback();
void QueryFallback(GPUVAddr gpu_addr, VideoCommon::QueryType type,
VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport);
Tegra::GPU& gpu; Tegra::GPU& gpu;
const Device& device; const Device& device;

View file

@ -168,6 +168,14 @@ RendererOpenGL::RendererOpenGL(Core::TelemetrySession& telemetry_session_,
if (!GLAD_GL_ARB_seamless_cubemap_per_texture && !GLAD_GL_AMD_seamless_cubemap_per_texture) { if (!GLAD_GL_ARB_seamless_cubemap_per_texture && !GLAD_GL_AMD_seamless_cubemap_per_texture) {
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
} }
// Enable unified vertex attributes and query vertex buffer address when the driver supports it
if (device.HasVertexBufferUnifiedMemory()) {
glEnableClientState(GL_VERTEX_ATTRIB_ARRAY_UNIFIED_NV);
glEnableClientState(GL_ELEMENT_ARRAY_UNIFIED_NV);
glMakeNamedBufferResidentNV(vertex_buffer.handle, GL_READ_ONLY);
glGetNamedBufferParameterui64vNV(vertex_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV,
&vertex_buffer_address);
}
} }
RendererOpenGL::~RendererOpenGL() = default; RendererOpenGL::~RendererOpenGL() = default;
@ -667,7 +675,13 @@ void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) {
offsetof(ScreenRectVertex, tex_coord)); offsetof(ScreenRectVertex, tex_coord));
glVertexAttribBinding(PositionLocation, 0); glVertexAttribBinding(PositionLocation, 0);
glVertexAttribBinding(TexCoordLocation, 0); glVertexAttribBinding(TexCoordLocation, 0);
glBindVertexBuffer(0, vertex_buffer.handle, 0, sizeof(ScreenRectVertex)); if (device.HasVertexBufferUnifiedMemory()) {
glBindVertexBuffer(0, 0, 0, sizeof(ScreenRectVertex));
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, 0, vertex_buffer_address,
sizeof(vertices));
} else {
glBindVertexBuffer(0, vertex_buffer.handle, 0, sizeof(ScreenRectVertex));
}
if (Settings::values.scaling_filter.GetValue() != Settings::ScalingFilter::NearestNeighbor) { if (Settings::values.scaling_filter.GetValue() != Settings::ScalingFilter::NearestNeighbor) {
glBindSampler(0, present_sampler.handle); glBindSampler(0, present_sampler.handle);

View file

@ -485,6 +485,10 @@ void RasterizerVulkan::DispatchCompute() {
} }
void RasterizerVulkan::ResetCounter(VideoCommon::QueryType type) { void RasterizerVulkan::ResetCounter(VideoCommon::QueryType type) {
if (type != VideoCommon::QueryType::ZPassPixelCount64) {
LOG_DEBUG(Render_Vulkan, "Unimplemented counter reset={}", type);
return;
}
query_cache.CounterReset(type); query_cache.CounterReset(type);
} }