;****************************************************************************** ;* x86-optimized input routines; does shuffling of packed ;* YUV formats into individual planes, and converts RGB ;* into YUV planes also. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com> ;* ;* This file is part of FFmpeg. ;* ;* FFmpeg is free software; you can redistribute it and/or ;* modify it under the terms of the GNU Lesser General Public ;* License as published by the Free Software Foundation; either ;* version 2.1 of the License, or (at your option) any later version. ;* ;* FFmpeg is distributed in the hope that it will be useful, ;* but WITHOUT ANY WARRANTY; without even the implied warranty of ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;* Lesser General Public License for more details. ;* ;* You should have received a copy of the GNU Lesser General Public ;* License along with FFmpeg; if not, write to the Free Software ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;****************************************************************************** %include "libavutil/x86/x86util.asm" SECTION_RODATA %define RY 0x20DE %define GY 0x4087 %define BY 0x0C88 %define RU 0xECFF %define GU 0xDAC8 %define BU 0x3838 %define RV 0x3838 %define GV 0xD0E3 %define BV 0xF6E4 rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15 rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15 %define bgr_Ycoeff_12x4 16*4 + 16* 0 + tableq %define bgr_Ycoeff_3x56 16*4 + 16* 1 + tableq %define rgb_Ycoeff_12x4 16*4 + 16* 2 + tableq %define rgb_Ycoeff_3x56 16*4 + 16* 3 + tableq %define bgr_Ucoeff_12x4 16*4 + 16* 4 + tableq %define bgr_Ucoeff_3x56 16*4 + 16* 5 + tableq %define rgb_Ucoeff_12x4 16*4 + 16* 6 + tableq %define rgb_Ucoeff_3x56 16*4 + 16* 7 + tableq %define bgr_Vcoeff_12x4 16*4 + 16* 8 + tableq %define bgr_Vcoeff_3x56 16*4 + 16* 9 + tableq %define rgb_Vcoeff_12x4 16*4 + 16*10 + tableq %define rgb_Vcoeff_3x56 16*4 + 16*11 + tableq %define rgba_Ycoeff_rb 16*4 + 16*12 + tableq %define rgba_Ycoeff_br 16*4 + 16*13 + tableq %define rgba_Ycoeff_ga 16*4 + 16*14 + tableq %define rgba_Ycoeff_ag 16*4 + 16*15 + tableq %define rgba_Ucoeff_rb 16*4 + 16*16 + tableq %define rgba_Ucoeff_br 16*4 + 16*17 + tableq %define rgba_Ucoeff_ga 16*4 + 16*18 + tableq %define rgba_Ucoeff_ag 16*4 + 16*19 + tableq %define rgba_Vcoeff_rb 16*4 + 16*20 + tableq %define rgba_Vcoeff_br 16*4 + 16*21 + tableq %define rgba_Vcoeff_ga 16*4 + 16*22 + tableq %define rgba_Vcoeff_ag 16*4 + 16*23 + tableq ; bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY ; bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY ; rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY ; rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY ; bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU ; bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU ; rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU ; rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU ; bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV ; bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV ; rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV ; rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV ; rgba_Ycoeff_rb: times 4 dw RY, BY ; rgba_Ycoeff_br: times 4 dw BY, RY ; rgba_Ycoeff_ga: times 4 dw GY, 0 ; rgba_Ycoeff_ag: times 4 dw 0, GY ; rgba_Ucoeff_rb: times 4 dw RU, BU ; rgba_Ucoeff_br: times 4 dw BU, RU ; rgba_Ucoeff_ga: times 4 dw GU, 0 ; rgba_Ucoeff_ag: times 4 dw 0, GU ; rgba_Vcoeff_rb: times 4 dw RV, BV ; rgba_Vcoeff_br: times 4 dw BV, RV ; rgba_Vcoeff_ga: times 4 dw GV, 0 ; rgba_Vcoeff_ag: times 4 dw 0, GV shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \ 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80 shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \ 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80 SECTION .text ;----------------------------------------------------------------------------- ; RGB to Y/UV. ; ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w); ; and ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, ; const uint8_t *unused, int w); ;----------------------------------------------------------------------------- ; %1 = nr. of XMM registers ; %2 = rgb or bgr %macro RGB24_TO_Y_FN 2-3 cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, table %if mmsize == 8 mova m5, [%2_Ycoeff_12x4] mova m6, [%2_Ycoeff_3x56] %define coeff1 m5 %define coeff2 m6 %elif ARCH_X86_64 mova m8, [%2_Ycoeff_12x4] mova m9, [%2_Ycoeff_3x56] %define coeff1 m8 %define coeff2 m9 %else ; x86-32 && mmsize == 16 %define coeff1 [%2_Ycoeff_12x4] %define coeff2 [%2_Ycoeff_3x56] %endif ; x86-32/64 && mmsize == 8/16 %if (ARCH_X86_64 || mmsize == 8) && %0 == 3 jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8 .body: %if cpuflag(ssse3) mova m7, [shuf_rgb_12x4] %define shuf_rgb1 m7 %if ARCH_X86_64 mova m10, [shuf_rgb_3x56] %define shuf_rgb2 m10 %else ; x86-32 %define shuf_rgb2 [shuf_rgb_3x56] %endif ; x86-32/64 %endif ; cpuflag(ssse3) %if ARCH_X86_64 movsxd wq, wd %endif add wq, wq add dstq, wq neg wq %if notcpuflag(ssse3) pxor m7, m7 %endif ; !cpuflag(ssse3) mova m4, [rgb_Yrnd] .loop: %if cpuflag(ssse3) movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3] movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7] pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 } pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 } pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 } pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 } %else ; !cpuflag(ssse3) movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 } movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 } movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 } movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 } %if mmsize == 16 ; i.e. sse2 punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 } punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 } movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 } movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 } movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 } movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 } punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 } punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 } %endif ; mmsize == 16 punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 } punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 } punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 } punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 } %endif ; cpuflag(ssse3) add srcq, 3 * mmsize / 2 pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY } pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY } pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY } pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY } paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3] paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7] paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] } paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] } psrad m0, 9 psrad m2, 9 packssdw m0, m2 ; (word) { Y[0-7] } mova [dstq+wq], m0 add wq, mmsize jl .loop REP_RET %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8 %endmacro ; %1 = nr. of XMM registers ; %2 = rgb or bgr %macro RGB24_TO_UV_FN 2-3 cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table %if ARCH_X86_64 mova m8, [%2_Ucoeff_12x4] mova m9, [%2_Ucoeff_3x56] mova m10, [%2_Vcoeff_12x4] mova m11, [%2_Vcoeff_3x56] %define coeffU1 m8 %define coeffU2 m9 %define coeffV1 m10 %define coeffV2 m11 %else ; x86-32 %define coeffU1 [%2_Ucoeff_12x4] %define coeffU2 [%2_Ucoeff_3x56] %define coeffV1 [%2_Vcoeff_12x4] %define coeffV2 [%2_Vcoeff_3x56] %endif ; x86-32/64 %if ARCH_X86_64 && %0 == 3 jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body %else ; ARCH_X86_64 && %0 == 3 .body: %if cpuflag(ssse3) mova m7, [shuf_rgb_12x4] %define shuf_rgb1 m7 %if ARCH_X86_64 mova m12, [shuf_rgb_3x56] %define shuf_rgb2 m12 %else ; x86-32 %define shuf_rgb2 [shuf_rgb_3x56] %endif ; x86-32/64 %endif ; cpuflag(ssse3) %if ARCH_X86_64 movsxd wq, dword r5m %else ; x86-32 mov wq, r5m %endif add wq, wq add dstUq, wq add dstVq, wq neg wq mova m6, [rgb_UVrnd] %if notcpuflag(ssse3) pxor m7, m7 %endif .loop: %if cpuflag(ssse3) movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3] movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7] pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 } pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 } %else ; !cpuflag(ssse3) movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 } movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 } movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 } movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 } %if mmsize == 16 punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 } punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 } movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 } movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 } %endif ; mmsize == 16 punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 } punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 } %endif ; cpuflag(ssse3) pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV } pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV } pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU } pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU } paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3] paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3] %if cpuflag(ssse3) pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 } pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 } %else ; !cpuflag(ssse3) %if mmsize == 16 movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 } movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 } punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 } punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 } %endif ; mmsize == 16 && !cpuflag(ssse3) punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 } punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 } %endif ; cpuflag(ssse3) add srcq, 3 * mmsize / 2 pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU } pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU } pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV } pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV } paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7] paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7] paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] } paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] } paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] } paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] } psrad m0, 9 psrad m2, 9 psrad m1, 9 psrad m4, 9 packssdw m0, m1 ; (word) { U[0-7] } packssdw m2, m4 ; (word) { V[0-7] } %if mmsize == 8 mova [dstUq+wq], m0 mova [dstVq+wq], m2 %else ; mmsize == 16 mova [dstUq+wq], m0 mova [dstVq+wq], m2 %endif ; mmsize == 8/16 add wq, mmsize jl .loop REP_RET %endif ; ARCH_X86_64 && %0 == 3 %endmacro ; %1 = nr. of XMM registers for rgb-to-Y func ; %2 = nr. of XMM registers for rgb-to-UV func %macro RGB24_FUNCS 2 RGB24_TO_Y_FN %1, rgb RGB24_TO_Y_FN %1, bgr, rgb RGB24_TO_UV_FN %2, rgb RGB24_TO_UV_FN %2, bgr, rgb %endmacro %if ARCH_X86_32 INIT_MMX mmx RGB24_FUNCS 0, 0 %endif INIT_XMM sse2 RGB24_FUNCS 10, 12 INIT_XMM ssse3 RGB24_FUNCS 11, 13 %if HAVE_AVX_EXTERNAL INIT_XMM avx RGB24_FUNCS 11, 13 %endif ; %1 = nr. of XMM registers ; %2-5 = rgba, bgra, argb or abgr (in individual characters) %macro RGB32_TO_Y_FN 5-6 cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, table mova m5, [rgba_Ycoeff_%2%4] mova m6, [rgba_Ycoeff_%3%5] %if %0 == 6 jmp mangle(private_prefix %+ _ %+ %6 %+ ToY %+ SUFFIX).body %else ; %0 == 6 .body: %if ARCH_X86_64 movsxd wq, wd %endif add wq, wq sub wq, mmsize - 1 lea srcq, [srcq+wq*2] add dstq, wq neg wq mova m4, [rgb_Yrnd] pcmpeqb m7, m7 psrlw m7, 8 ; (word) { 0x00ff } x4 .loop: ; FIXME check alignment and use mova movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3] movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7] DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7] pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3] pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3] pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7] pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7] paddd m0, m4 ; += rgb_Yrnd paddd m2, m4 ; += rgb_Yrnd paddd m0, m1 ; (dword) { Y[0-3] } paddd m2, m3 ; (dword) { Y[4-7] } psrad m0, 9 psrad m2, 9 packssdw m0, m2 ; (word) { Y[0-7] } mova [dstq+wq], m0 add wq, mmsize jl .loop sub wq, mmsize - 1 jz .end add srcq, 2*mmsize - 2 add dstq, mmsize - 1 .loop2: movd m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3] DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7] pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3] pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3] paddd m0, m4 ; += rgb_Yrnd paddd m0, m1 ; (dword) { Y[0-3] } psrad m0, 9 packssdw m0, m0 ; (word) { Y[0-7] } movd [dstq+wq], m0 add wq, 2 jl .loop2 .end: REP_RET %endif ; %0 == 3 %endmacro ; %1 = nr. of XMM registers ; %2-5 = rgba, bgra, argb or abgr (in individual characters) %macro RGB32_TO_UV_FN 5-6 cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table %if ARCH_X86_64 mova m8, [rgba_Ucoeff_%2%4] mova m9, [rgba_Ucoeff_%3%5] mova m10, [rgba_Vcoeff_%2%4] mova m11, [rgba_Vcoeff_%3%5] %define coeffU1 m8 %define coeffU2 m9 %define coeffV1 m10 %define coeffV2 m11 %else ; x86-32 %define coeffU1 [rgba_Ucoeff_%2%4] %define coeffU2 [rgba_Ucoeff_%3%5] %define coeffV1 [rgba_Vcoeff_%2%4] %define coeffV2 [rgba_Vcoeff_%3%5] %endif ; x86-64/32 %if ARCH_X86_64 && %0 == 6 jmp mangle(private_prefix %+ _ %+ %6 %+ ToUV %+ SUFFIX).body %else ; ARCH_X86_64 && %0 == 6 .body: %if ARCH_X86_64 movsxd wq, dword r5m %else ; x86-32 mov wq, r5m %endif add wq, wq sub wq, mmsize - 1 add dstUq, wq add dstVq, wq lea srcq, [srcq+wq*2] neg wq pcmpeqb m7, m7 psrlw m7, 8 ; (word) { 0x00ff } x4 mova m6, [rgb_UVrnd] .loop: ; FIXME check alignment and use mova movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3] movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7] DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7] pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3] pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3] pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3] pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3] paddd m3, m6 ; += rgb_UVrnd paddd m1, m6 ; += rgb_UVrnd paddd m2, m3 ; (dword) { V[0-3] } paddd m0, m1 ; (dword) { U[0-3] } pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7] pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7] pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7] pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7] paddd m3, m6 ; += rgb_UVrnd paddd m5, m6 ; += rgb_UVrnd psrad m0, 9 paddd m1, m3 ; (dword) { V[4-7] } paddd m4, m5 ; (dword) { U[4-7] } psrad m2, 9 psrad m4, 9 psrad m1, 9 packssdw m0, m4 ; (word) { U[0-7] } packssdw m2, m1 ; (word) { V[0-7] } %if mmsize == 8 mova [dstUq+wq], m0 mova [dstVq+wq], m2 %else ; mmsize == 16 mova [dstUq+wq], m0 mova [dstVq+wq], m2 %endif ; mmsize == 8/16 add wq, mmsize jl .loop sub wq, mmsize - 1 jz .end add srcq , 2*mmsize - 2 add dstUq, mmsize - 1 add dstVq, mmsize - 1 .loop2: movd m0, [srcq+wq*2] ; (byte) { Bx, Gx, Rx, xx }[0-3] DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7] pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3] pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3] pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3] pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3] paddd m3, m6 ; += rgb_UVrnd paddd m1, m6 ; += rgb_UVrnd paddd m2, m3 ; (dword) { V[0-3] } paddd m0, m1 ; (dword) { U[0-3] } psrad m0, 9 psrad m2, 9 packssdw m0, m0 ; (word) { U[0-7] } packssdw m2, m2 ; (word) { V[0-7] } movd [dstUq+wq], m0 movd [dstVq+wq], m2 add wq, 2 jl .loop2 .end: REP_RET %endif ; ARCH_X86_64 && %0 == 3 %endmacro ; %1 = nr. of XMM registers for rgb-to-Y func ; %2 = nr. of XMM registers for rgb-to-UV func %macro RGB32_FUNCS 2 RGB32_TO_Y_FN %1, r, g, b, a RGB32_TO_Y_FN %1, b, g, r, a, rgba RGB32_TO_Y_FN %1, a, r, g, b, rgba RGB32_TO_Y_FN %1, a, b, g, r, rgba RGB32_TO_UV_FN %2, r, g, b, a RGB32_TO_UV_FN %2, b, g, r, a, rgba RGB32_TO_UV_FN %2, a, r, g, b, rgba RGB32_TO_UV_FN %2, a, b, g, r, rgba %endmacro %if ARCH_X86_32 INIT_MMX mmx RGB32_FUNCS 0, 0 %endif INIT_XMM sse2 RGB32_FUNCS 8, 12 %if HAVE_AVX_EXTERNAL INIT_XMM avx RGB32_FUNCS 8, 12 %endif ;----------------------------------------------------------------------------- ; YUYV/UYVY/NV12/NV21 packed pixel shuffling. ; ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w); ; and ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, ; const uint8_t *unused, int w); ;----------------------------------------------------------------------------- ; %1 = a (aligned) or u (unaligned) ; %2 = yuyv or uyvy %macro LOOP_YUYV_TO_Y 2 .loop_%1: mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... } mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... } %ifidn %2, yuyv pand m0, m2 ; (word) { Y0, Y1, ..., Y7 } pand m1, m2 ; (word) { Y8, Y9, ..., Y15 } %else ; uyvy psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 } psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 } %endif ; yuyv/uyvy packuswb m0, m1 ; (byte) { Y0, ..., Y15 } mova [dstq+wq], m0 add wq, mmsize jl .loop_%1 REP_RET %endmacro ; %1 = nr. of XMM registers ; %2 = yuyv or uyvy ; %3 = if specified, it means that unaligned and aligned code in loop ; will be the same (i.e. YUYV+AVX), and thus we don't need to ; split the loop in an aligned and unaligned case %macro YUYV_TO_Y_FN 2-3 cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w %if ARCH_X86_64 movsxd wq, wd %endif add dstq, wq %if mmsize == 16 test srcq, 15 %endif lea srcq, [srcq+wq*2] %ifidn %2, yuyv pcmpeqb m2, m2 ; (byte) { 0xff } x 16 psrlw m2, 8 ; (word) { 0x00ff } x 8 %endif ; yuyv %if mmsize == 16 jnz .loop_u_start neg wq LOOP_YUYV_TO_Y a, %2 .loop_u_start: neg wq LOOP_YUYV_TO_Y u, %2 %else ; mmsize == 8 neg wq LOOP_YUYV_TO_Y a, %2 %endif ; mmsize == 8/16 %endmacro ; %1 = a (aligned) or u (unaligned) ; %2 = yuyv or uyvy %macro LOOP_YUYV_TO_UV 2 .loop_%1: %ifidn %2, yuyv mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... } mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... } psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 } psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 } %else ; uyvy %if cpuflag(avx) vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 } vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 } %else mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... } mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... } pand m0, m2 ; (word) { U0, V0, ..., U3, V3 } pand m1, m2 ; (word) { U4, V4, ..., U7, V7 } %endif %endif ; yuyv/uyvy packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 } pand m1, m0, m2 ; (word) { U0, U1, ..., U7 } psrlw m0, 8 ; (word) { V0, V1, ..., V7 } %if mmsize == 16 packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 } movh [dstUq+wq], m1 movhps [dstVq+wq], m1 %else ; mmsize == 8 packuswb m1, m1 ; (byte) { U0, ... U3 } packuswb m0, m0 ; (byte) { V0, ... V3 } movh [dstUq+wq], m1 movh [dstVq+wq], m0 %endif ; mmsize == 8/16 add wq, mmsize / 2 jl .loop_%1 REP_RET %endmacro ; %1 = nr. of XMM registers ; %2 = yuyv or uyvy ; %3 = if specified, it means that unaligned and aligned code in loop ; will be the same (i.e. UYVY+AVX), and thus we don't need to ; split the loop in an aligned and unaligned case %macro YUYV_TO_UV_FN 2-3 cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w %if ARCH_X86_64 movsxd wq, dword r5m %else ; x86-32 mov wq, r5m %endif add dstUq, wq add dstVq, wq %if mmsize == 16 && %0 == 2 test srcq, 15 %endif lea srcq, [srcq+wq*4] pcmpeqb m2, m2 ; (byte) { 0xff } x 16 psrlw m2, 8 ; (word) { 0x00ff } x 8 ; NOTE: if uyvy+avx, u/a are identical %if mmsize == 16 && %0 == 2 jnz .loop_u_start neg wq LOOP_YUYV_TO_UV a, %2 .loop_u_start: neg wq LOOP_YUYV_TO_UV u, %2 %else ; mmsize == 8 neg wq LOOP_YUYV_TO_UV a, %2 %endif ; mmsize == 8/16 %endmacro ; %1 = a (aligned) or u (unaligned) ; %2 = nv12 or nv21 %macro LOOP_NVXX_TO_UV 2 .loop_%1: mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... } mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... } pand m2, m0, m5 ; (word) { U0, U1, ..., U7 } pand m3, m1, m5 ; (word) { U8, U9, ..., U15 } psrlw m0, 8 ; (word) { V0, V1, ..., V7 } psrlw m1, 8 ; (word) { V8, V9, ..., V15 } packuswb m2, m3 ; (byte) { U0, ..., U15 } packuswb m0, m1 ; (byte) { V0, ..., V15 } %ifidn %2, nv12 mova [dstUq+wq], m2 mova [dstVq+wq], m0 %else ; nv21 mova [dstVq+wq], m2 mova [dstUq+wq], m0 %endif ; nv12/21 add wq, mmsize jl .loop_%1 REP_RET %endmacro ; %1 = nr. of XMM registers ; %2 = nv12 or nv21 %macro NVXX_TO_UV_FN 2 cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w %if ARCH_X86_64 movsxd wq, dword r5m %else ; x86-32 mov wq, r5m %endif add dstUq, wq add dstVq, wq %if mmsize == 16 test srcq, 15 %endif lea srcq, [srcq+wq*2] pcmpeqb m5, m5 ; (byte) { 0xff } x 16 psrlw m5, 8 ; (word) { 0x00ff } x 8 %if mmsize == 16 jnz .loop_u_start neg wq LOOP_NVXX_TO_UV a, %2 .loop_u_start: neg wq LOOP_NVXX_TO_UV u, %2 %else ; mmsize == 8 neg wq LOOP_NVXX_TO_UV a, %2 %endif ; mmsize == 8/16 %endmacro %if ARCH_X86_32 INIT_MMX mmx YUYV_TO_Y_FN 0, yuyv YUYV_TO_Y_FN 0, uyvy YUYV_TO_UV_FN 0, yuyv YUYV_TO_UV_FN 0, uyvy NVXX_TO_UV_FN 0, nv12 NVXX_TO_UV_FN 0, nv21 %endif INIT_XMM sse2 YUYV_TO_Y_FN 3, yuyv YUYV_TO_Y_FN 2, uyvy YUYV_TO_UV_FN 3, yuyv YUYV_TO_UV_FN 3, uyvy NVXX_TO_UV_FN 5, nv12 NVXX_TO_UV_FN 5, nv21 %if HAVE_AVX_EXTERNAL INIT_XMM avx ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but ; that's not faster in practice YUYV_TO_UV_FN 3, yuyv YUYV_TO_UV_FN 3, uyvy, 1 NVXX_TO_UV_FN 5, nv12 NVXX_TO_UV_FN 5, nv21 %endif