pineapple/externals/cubeb/src/cubeb_pulse.c
2020-12-28 15:15:37 +00:00

1638 lines
48 KiB
C
Executable file

/*
* Copyright © 2011 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#undef NDEBUG
#include <assert.h>
#include <dlfcn.h>
#include <pulse/pulseaudio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cubeb-internal.h"
#include "cubeb/cubeb.h"
#include "cubeb_mixer.h"
#include "cubeb_strings.h"
#ifdef DISABLE_LIBPULSE_DLOPEN
#define WRAP(x) x
#else
#define WRAP(x) cubeb_##x
#define LIBPULSE_API_VISIT(X) \
X(pa_channel_map_can_balance) \
X(pa_channel_map_init) \
X(pa_context_connect) \
X(pa_context_disconnect) \
X(pa_context_drain) \
X(pa_context_get_server_info) \
X(pa_context_get_sink_info_by_name) \
X(pa_context_get_sink_info_list) \
X(pa_context_get_sink_input_info) \
X(pa_context_get_source_info_list) \
X(pa_context_get_state) \
X(pa_context_new) \
X(pa_context_rttime_new) \
X(pa_context_set_sink_input_volume) \
X(pa_context_set_state_callback) \
X(pa_context_unref) \
X(pa_cvolume_set) \
X(pa_cvolume_set_balance) \
X(pa_frame_size) \
X(pa_operation_get_state) \
X(pa_operation_unref) \
X(pa_proplist_gets) \
X(pa_rtclock_now) \
X(pa_stream_begin_write) \
X(pa_stream_cancel_write) \
X(pa_stream_connect_playback) \
X(pa_stream_cork) \
X(pa_stream_disconnect) \
X(pa_stream_get_channel_map) \
X(pa_stream_get_index) \
X(pa_stream_get_latency) \
X(pa_stream_get_sample_spec) \
X(pa_stream_get_state) \
X(pa_stream_get_time) \
X(pa_stream_new) \
X(pa_stream_set_state_callback) \
X(pa_stream_set_write_callback) \
X(pa_stream_unref) \
X(pa_stream_update_timing_info) \
X(pa_stream_write) \
X(pa_sw_volume_from_linear) \
X(pa_threaded_mainloop_free) \
X(pa_threaded_mainloop_get_api) \
X(pa_threaded_mainloop_in_thread) \
X(pa_threaded_mainloop_lock) \
X(pa_threaded_mainloop_new) \
X(pa_threaded_mainloop_signal) \
X(pa_threaded_mainloop_start) \
X(pa_threaded_mainloop_stop) \
X(pa_threaded_mainloop_unlock) \
X(pa_threaded_mainloop_wait) \
X(pa_usec_to_bytes) \
X(pa_stream_set_read_callback) \
X(pa_stream_connect_record) \
X(pa_stream_readable_size) \
X(pa_stream_writable_size) \
X(pa_stream_peek) \
X(pa_stream_drop) \
X(pa_stream_get_buffer_attr) \
X(pa_stream_get_device_name) \
X(pa_context_set_subscribe_callback) \
X(pa_context_subscribe) \
X(pa_mainloop_api_once) \
X(pa_get_library_version) \
X(pa_channel_map_init_auto) \
X(pa_stream_set_name) \
#define MAKE_TYPEDEF(x) static typeof(x) * cubeb_##x;
LIBPULSE_API_VISIT(MAKE_TYPEDEF);
#undef MAKE_TYPEDEF
#endif
#if PA_CHECK_VERSION(2, 0, 0)
static int has_pulse_v2 = 0;
#endif
static struct cubeb_ops const pulse_ops;
struct cubeb_default_sink_info {
pa_channel_map channel_map;
uint32_t sample_spec_rate;
pa_sink_flags_t flags;
};
struct cubeb {
struct cubeb_ops const * ops;
void * libpulse;
pa_threaded_mainloop * mainloop;
pa_context * context;
struct cubeb_default_sink_info * default_sink_info;
char * context_name;
int error;
cubeb_device_collection_changed_callback output_collection_changed_callback;
void * output_collection_changed_user_ptr;
cubeb_device_collection_changed_callback input_collection_changed_callback;
void * input_collection_changed_user_ptr;
cubeb_strings * device_ids;
};
struct cubeb_stream {
/* Note: Must match cubeb_stream layout in cubeb.c. */
cubeb * context;
void * user_ptr;
/**/
pa_stream * output_stream;
pa_stream * input_stream;
cubeb_data_callback data_callback;
cubeb_state_callback state_callback;
pa_time_event * drain_timer;
pa_sample_spec output_sample_spec;
pa_sample_spec input_sample_spec;
int shutdown;
float volume;
cubeb_state state;
};
static const float PULSE_NO_GAIN = -1.0;
enum cork_state {
UNCORK = 0,
CORK = 1 << 0,
NOTIFY = 1 << 1
};
static int
intern_device_id(cubeb * ctx, char const ** id)
{
char const * interned;
assert(ctx);
assert(id);
interned = cubeb_strings_intern(ctx->device_ids, *id);
if (!interned) {
return CUBEB_ERROR;
}
*id = interned;
return CUBEB_OK;
}
static void
sink_info_callback(pa_context * context, const pa_sink_info * info, int eol, void * u)
{
(void)context;
cubeb * ctx = u;
if (!eol) {
free(ctx->default_sink_info);
ctx->default_sink_info = malloc(sizeof(struct cubeb_default_sink_info));
memcpy(&ctx->default_sink_info->channel_map, &info->channel_map, sizeof(pa_channel_map));
ctx->default_sink_info->sample_spec_rate = info->sample_spec.rate;
ctx->default_sink_info->flags = info->flags;
}
WRAP(pa_threaded_mainloop_signal)(ctx->mainloop, 0);
}
static void
server_info_callback(pa_context * context, const pa_server_info * info, void * u)
{
pa_operation * o;
o = WRAP(pa_context_get_sink_info_by_name)(context, info->default_sink_name, sink_info_callback, u);
if (o) {
WRAP(pa_operation_unref)(o);
}
}
static void
context_state_callback(pa_context * c, void * u)
{
cubeb * ctx = u;
if (!PA_CONTEXT_IS_GOOD(WRAP(pa_context_get_state)(c))) {
ctx->error = 1;
}
WRAP(pa_threaded_mainloop_signal)(ctx->mainloop, 0);
}
static void
context_notify_callback(pa_context * c, void * u)
{
(void)c;
cubeb * ctx = u;
WRAP(pa_threaded_mainloop_signal)(ctx->mainloop, 0);
}
static void
stream_success_callback(pa_stream * s, int success, void * u)
{
(void)s;
(void)success;
cubeb_stream * stm = u;
WRAP(pa_threaded_mainloop_signal)(stm->context->mainloop, 0);
}
static void
stream_state_change_callback(cubeb_stream * stm, cubeb_state s)
{
stm->state = s;
stm->state_callback(stm, stm->user_ptr, s);
}
static void
stream_drain_callback(pa_mainloop_api * a, pa_time_event * e, struct timeval const * tv, void * u)
{
(void)a;
(void)tv;
cubeb_stream * stm = u;
assert(stm->drain_timer == e);
stream_state_change_callback(stm, CUBEB_STATE_DRAINED);
/* there's no pa_rttime_free, so use this instead. */
a->time_free(stm->drain_timer);
stm->drain_timer = NULL;
WRAP(pa_threaded_mainloop_signal)(stm->context->mainloop, 0);
}
static void
stream_state_callback(pa_stream * s, void * u)
{
cubeb_stream * stm = u;
if (!PA_STREAM_IS_GOOD(WRAP(pa_stream_get_state)(s))) {
stream_state_change_callback(stm, CUBEB_STATE_ERROR);
}
WRAP(pa_threaded_mainloop_signal)(stm->context->mainloop, 0);
}
static void
trigger_user_callback(pa_stream * s, void const * input_data, size_t nbytes, cubeb_stream * stm)
{
void * buffer;
size_t size;
int r;
long got;
size_t towrite, read_offset;
size_t frame_size;
frame_size = WRAP(pa_frame_size)(&stm->output_sample_spec);
assert(nbytes % frame_size == 0);
towrite = nbytes;
read_offset = 0;
while (towrite) {
size = towrite;
r = WRAP(pa_stream_begin_write)(s, &buffer, &size);
// Note: this has failed running under rr on occassion - needs investigation.
assert(r == 0);
assert(size > 0);
assert(size % frame_size == 0);
LOGV("Trigger user callback with output buffer size=%zd, read_offset=%zd", size, read_offset);
got = stm->data_callback(stm, stm->user_ptr, (uint8_t const *)input_data + read_offset, buffer, size / frame_size);
if (got < 0) {
WRAP(pa_stream_cancel_write)(s);
stm->shutdown = 1;
return;
}
// If more iterations move offset of read buffer
if (input_data) {
size_t in_frame_size = WRAP(pa_frame_size)(&stm->input_sample_spec);
read_offset += (size / frame_size) * in_frame_size;
}
if (stm->volume != PULSE_NO_GAIN) {
uint32_t samples = size * stm->output_sample_spec.channels / frame_size ;
if (stm->output_sample_spec.format == PA_SAMPLE_S16BE ||
stm->output_sample_spec.format == PA_SAMPLE_S16LE) {
short * b = buffer;
for (uint32_t i = 0; i < samples; i++) {
b[i] *= stm->volume;
}
} else {
float * b = buffer;
for (uint32_t i = 0; i < samples; i++) {
b[i] *= stm->volume;
}
}
}
r = WRAP(pa_stream_write)(s, buffer, got * frame_size, NULL, 0, PA_SEEK_RELATIVE);
assert(r == 0);
if ((size_t) got < size / frame_size) {
pa_usec_t latency = 0;
r = WRAP(pa_stream_get_latency)(s, &latency, NULL);
if (r == -PA_ERR_NODATA) {
/* this needs a better guess. */
latency = 100 * PA_USEC_PER_MSEC;
}
assert(r == 0 || r == -PA_ERR_NODATA);
/* pa_stream_drain is useless, see PA bug# 866. this is a workaround. */
/* arbitrary safety margin: double the current latency. */
assert(!stm->drain_timer);
stm->drain_timer = WRAP(pa_context_rttime_new)(stm->context->context, WRAP(pa_rtclock_now)() + 2 * latency, stream_drain_callback, stm);
stm->shutdown = 1;
return;
}
towrite -= size;
}
assert(towrite == 0);
}
static int
read_from_input(pa_stream * s, void const ** buffer, size_t * size)
{
size_t readable_size = WRAP(pa_stream_readable_size)(s);
if (readable_size > 0) {
if (WRAP(pa_stream_peek)(s, buffer, size) < 0) {
return -1;
}
}
return readable_size;
}
static void
stream_write_callback(pa_stream * s, size_t nbytes, void * u)
{
LOGV("Output callback to be written buffer size %zd", nbytes);
cubeb_stream * stm = u;
if (stm->shutdown ||
stm->state != CUBEB_STATE_STARTED) {
return;
}
if (!stm->input_stream){
// Output/playback only operation.
// Write directly to output
assert(!stm->input_stream && stm->output_stream);
trigger_user_callback(s, NULL, nbytes, stm);
}
}
static void
stream_read_callback(pa_stream * s, size_t nbytes, void * u)
{
LOGV("Input callback buffer size %zd", nbytes);
cubeb_stream * stm = u;
if (stm->shutdown) {
return;
}
void const * read_data = NULL;
size_t read_size;
while (read_from_input(s, &read_data, &read_size) > 0) {
/* read_data can be NULL in case of a hole. */
if (read_data) {
size_t in_frame_size = WRAP(pa_frame_size)(&stm->input_sample_spec);
size_t read_frames = read_size / in_frame_size;
if (stm->output_stream) {
// input/capture + output/playback operation
size_t out_frame_size = WRAP(pa_frame_size)(&stm->output_sample_spec);
size_t write_size = read_frames * out_frame_size;
// Offer full duplex data for writing
trigger_user_callback(stm->output_stream, read_data, write_size, stm);
} else {
// input/capture only operation. Call callback directly
long got = stm->data_callback(stm, stm->user_ptr, read_data, NULL, read_frames);
if (got < 0 || (size_t) got != read_frames) {
WRAP(pa_stream_cancel_write)(s);
stm->shutdown = 1;
break;
}
}
}
if (read_size > 0) {
WRAP(pa_stream_drop)(s);
}
if (stm->shutdown) {
return;
}
}
}
static int
wait_until_context_ready(cubeb * ctx)
{
for (;;) {
pa_context_state_t state = WRAP(pa_context_get_state)(ctx->context);
if (!PA_CONTEXT_IS_GOOD(state))
return -1;
if (state == PA_CONTEXT_READY)
break;
WRAP(pa_threaded_mainloop_wait)(ctx->mainloop);
}
return 0;
}
static int
wait_until_io_stream_ready(pa_stream * stream, pa_threaded_mainloop * mainloop)
{
if (!stream || !mainloop){
return -1;
}
for (;;) {
pa_stream_state_t state = WRAP(pa_stream_get_state)(stream);
if (!PA_STREAM_IS_GOOD(state))
return -1;
if (state == PA_STREAM_READY)
break;
WRAP(pa_threaded_mainloop_wait)(mainloop);
}
return 0;
}
static int
wait_until_stream_ready(cubeb_stream * stm)
{
if (stm->output_stream &&
wait_until_io_stream_ready(stm->output_stream, stm->context->mainloop) == -1) {
return -1;
}
if(stm->input_stream &&
wait_until_io_stream_ready(stm->input_stream, stm->context->mainloop) == -1) {
return -1;
}
return 0;
}
static int
operation_wait(cubeb * ctx, pa_stream * stream, pa_operation * o)
{
while (WRAP(pa_operation_get_state)(o) == PA_OPERATION_RUNNING) {
WRAP(pa_threaded_mainloop_wait)(ctx->mainloop);
if (!PA_CONTEXT_IS_GOOD(WRAP(pa_context_get_state)(ctx->context))) {
return -1;
}
if (stream && !PA_STREAM_IS_GOOD(WRAP(pa_stream_get_state)(stream))) {
return -1;
}
}
return 0;
}
static void
cork_io_stream(cubeb_stream * stm, pa_stream * io_stream, enum cork_state state)
{
pa_operation * o;
if (!io_stream) {
return;
}
o = WRAP(pa_stream_cork)(io_stream, state & CORK, stream_success_callback, stm);
if (o) {
operation_wait(stm->context, io_stream, o);
WRAP(pa_operation_unref)(o);
}
}
static void
stream_cork(cubeb_stream * stm, enum cork_state state)
{
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
cork_io_stream(stm, stm->output_stream, state);
cork_io_stream(stm, stm->input_stream, state);
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
if (state & NOTIFY) {
stream_state_change_callback(stm, state & CORK ? CUBEB_STATE_STOPPED
: CUBEB_STATE_STARTED);
}
}
static int
stream_update_timing_info(cubeb_stream * stm)
{
int r = -1;
pa_operation * o = NULL;
if (stm->output_stream) {
o = WRAP(pa_stream_update_timing_info)(stm->output_stream, stream_success_callback, stm);
if (o) {
r = operation_wait(stm->context, stm->output_stream, o);
WRAP(pa_operation_unref)(o);
}
if (r != 0) {
return r;
}
}
if (stm->input_stream) {
o = WRAP(pa_stream_update_timing_info)(stm->input_stream, stream_success_callback, stm);
if (o) {
r = operation_wait(stm->context, stm->input_stream, o);
WRAP(pa_operation_unref)(o);
}
}
return r;
}
static pa_channel_position_t
cubeb_channel_to_pa_channel(cubeb_channel channel)
{
switch (channel) {
case CHANNEL_FRONT_LEFT:
return PA_CHANNEL_POSITION_FRONT_LEFT;
case CHANNEL_FRONT_RIGHT:
return PA_CHANNEL_POSITION_FRONT_RIGHT;
case CHANNEL_FRONT_CENTER:
return PA_CHANNEL_POSITION_FRONT_CENTER;
case CHANNEL_LOW_FREQUENCY:
return PA_CHANNEL_POSITION_LFE;
case CHANNEL_BACK_LEFT:
return PA_CHANNEL_POSITION_REAR_LEFT;
case CHANNEL_BACK_RIGHT:
return PA_CHANNEL_POSITION_REAR_RIGHT;
case CHANNEL_FRONT_LEFT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
case CHANNEL_FRONT_RIGHT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
case CHANNEL_BACK_CENTER:
return PA_CHANNEL_POSITION_REAR_CENTER;
case CHANNEL_SIDE_LEFT:
return PA_CHANNEL_POSITION_SIDE_LEFT;
case CHANNEL_SIDE_RIGHT:
return PA_CHANNEL_POSITION_SIDE_RIGHT;
case CHANNEL_TOP_CENTER:
return PA_CHANNEL_POSITION_TOP_CENTER;
case CHANNEL_TOP_FRONT_LEFT:
return PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
case CHANNEL_TOP_FRONT_CENTER:
return PA_CHANNEL_POSITION_TOP_FRONT_CENTER;
case CHANNEL_TOP_FRONT_RIGHT:
return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
case CHANNEL_TOP_BACK_LEFT:
return PA_CHANNEL_POSITION_TOP_REAR_LEFT;
case CHANNEL_TOP_BACK_CENTER:
return PA_CHANNEL_POSITION_TOP_REAR_CENTER;
case CHANNEL_TOP_BACK_RIGHT:
return PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
default:
return PA_CHANNEL_POSITION_INVALID;
}
}
static void
layout_to_channel_map(cubeb_channel_layout layout, pa_channel_map * cm)
{
assert(cm && layout != CUBEB_LAYOUT_UNDEFINED);
WRAP(pa_channel_map_init)(cm);
uint32_t channels = 0;
cubeb_channel_layout channelMap = layout;
for (uint32_t i = 0 ; channelMap != 0; ++i) {
uint32_t channel = (channelMap & 1) << i;
if (channel != 0) {
cm->map[channels] = cubeb_channel_to_pa_channel(channel);
channels++;
}
channelMap = channelMap >> 1;
}
unsigned int channels_from_layout = cubeb_channel_layout_nb_channels(layout);
assert(channels_from_layout <= UINT8_MAX);
cm->channels = (uint8_t) channels_from_layout;
// Special case single channel center mapping as mono.
if (cm->channels == 1 && cm->map[0] == PA_CHANNEL_POSITION_FRONT_CENTER) {
cm->map[0] = PA_CHANNEL_POSITION_MONO;
}
}
static void pulse_context_destroy(cubeb * ctx);
static void pulse_destroy(cubeb * ctx);
static int
pulse_context_init(cubeb * ctx)
{
int r;
if (ctx->context) {
assert(ctx->error == 1);
pulse_context_destroy(ctx);
}
ctx->context = WRAP(pa_context_new)(WRAP(pa_threaded_mainloop_get_api)(ctx->mainloop),
ctx->context_name);
if (!ctx->context) {
return -1;
}
WRAP(pa_context_set_state_callback)(ctx->context, context_state_callback, ctx);
WRAP(pa_threaded_mainloop_lock)(ctx->mainloop);
r = WRAP(pa_context_connect)(ctx->context, NULL, 0, NULL);
if (r < 0 || wait_until_context_ready(ctx) != 0) {
WRAP(pa_threaded_mainloop_unlock)(ctx->mainloop);
pulse_context_destroy(ctx);
ctx->context = NULL;
return -1;
}
WRAP(pa_threaded_mainloop_unlock)(ctx->mainloop);
ctx->error = 0;
return 0;
}
static int pulse_subscribe_notifications(cubeb * context,
pa_subscription_mask_t mask);
/*static*/ int
pulse_init(cubeb ** context, char const * context_name)
{
void * libpulse = NULL;
cubeb * ctx;
pa_operation * o;
*context = NULL;
#ifndef DISABLE_LIBPULSE_DLOPEN
libpulse = dlopen("libpulse.so.0", RTLD_LAZY);
if (!libpulse) {
libpulse = dlopen("libpulse.so", RTLD_LAZY);
if (!libpulse) {
return CUBEB_ERROR;
}
}
#define LOAD(x) { \
cubeb_##x = dlsym(libpulse, #x); \
if (!cubeb_##x) { \
dlclose(libpulse); \
return CUBEB_ERROR; \
} \
}
LIBPULSE_API_VISIT(LOAD);
#undef LOAD
#endif
#if PA_CHECK_VERSION(2, 0, 0)
const char* version = WRAP(pa_get_library_version)();
has_pulse_v2 = strtol(version, NULL, 10) >= 2;
#endif
ctx = calloc(1, sizeof(*ctx));
assert(ctx);
ctx->ops = &pulse_ops;
ctx->libpulse = libpulse;
if (cubeb_strings_init(&ctx->device_ids) != CUBEB_OK) {
pulse_destroy(ctx);
return CUBEB_ERROR;
}
ctx->mainloop = WRAP(pa_threaded_mainloop_new)();
ctx->default_sink_info = NULL;
WRAP(pa_threaded_mainloop_start)(ctx->mainloop);
ctx->context_name = context_name ? strdup(context_name) : NULL;
if (pulse_context_init(ctx) != 0) {
pulse_destroy(ctx);
return CUBEB_ERROR;
}
/* server_info_callback performs a second async query, which is
responsible for initializing default_sink_info and signalling the
mainloop to end the wait. */
WRAP(pa_threaded_mainloop_lock)(ctx->mainloop);
o = WRAP(pa_context_get_server_info)(ctx->context, server_info_callback, ctx);
if (o) {
operation_wait(ctx, NULL, o);
WRAP(pa_operation_unref)(o);
}
WRAP(pa_threaded_mainloop_unlock)(ctx->mainloop);
/* Update `default_sink_info` when the default device changes. */
pulse_subscribe_notifications(ctx, PA_SUBSCRIPTION_MASK_SERVER);
*context = ctx;
return CUBEB_OK;
}
static char const *
pulse_get_backend_id(cubeb * ctx)
{
(void)ctx;
return "pulse";
}
static int
pulse_get_max_channel_count(cubeb * ctx, uint32_t * max_channels)
{
(void)ctx;
assert(ctx && max_channels);
if (!ctx->default_sink_info)
return CUBEB_ERROR;
*max_channels = ctx->default_sink_info->channel_map.channels;
return CUBEB_OK;
}
static int
pulse_get_preferred_sample_rate(cubeb * ctx, uint32_t * rate)
{
assert(ctx && rate);
(void)ctx;
if (!ctx->default_sink_info)
return CUBEB_ERROR;
*rate = ctx->default_sink_info->sample_spec_rate;
return CUBEB_OK;
}
static int
pulse_get_min_latency(cubeb * ctx, cubeb_stream_params params, uint32_t * latency_frames)
{
(void)ctx;
// According to PulseAudio developers, this is a safe minimum.
*latency_frames = 25 * params.rate / 1000;
return CUBEB_OK;
}
static void
pulse_context_destroy(cubeb * ctx)
{
pa_operation * o;
WRAP(pa_threaded_mainloop_lock)(ctx->mainloop);
o = WRAP(pa_context_drain)(ctx->context, context_notify_callback, ctx);
if (o) {
operation_wait(ctx, NULL, o);
WRAP(pa_operation_unref)(o);
}
WRAP(pa_context_set_state_callback)(ctx->context, NULL, NULL);
WRAP(pa_context_disconnect)(ctx->context);
WRAP(pa_context_unref)(ctx->context);
WRAP(pa_threaded_mainloop_unlock)(ctx->mainloop);
}
static void
pulse_destroy(cubeb * ctx)
{
free(ctx->context_name);
if (ctx->context) {
pulse_context_destroy(ctx);
}
if (ctx->mainloop) {
WRAP(pa_threaded_mainloop_stop)(ctx->mainloop);
WRAP(pa_threaded_mainloop_free)(ctx->mainloop);
}
if (ctx->device_ids) {
cubeb_strings_destroy(ctx->device_ids);
}
if (ctx->libpulse) {
dlclose(ctx->libpulse);
}
free(ctx->default_sink_info);
free(ctx);
}
static void pulse_stream_destroy(cubeb_stream * stm);
static pa_sample_format_t
to_pulse_format(cubeb_sample_format format)
{
switch (format) {
case CUBEB_SAMPLE_S16LE:
return PA_SAMPLE_S16LE;
case CUBEB_SAMPLE_S16BE:
return PA_SAMPLE_S16BE;
case CUBEB_SAMPLE_FLOAT32LE:
return PA_SAMPLE_FLOAT32LE;
case CUBEB_SAMPLE_FLOAT32BE:
return PA_SAMPLE_FLOAT32BE;
default:
return PA_SAMPLE_INVALID;
}
}
static cubeb_channel_layout
pulse_default_layout_for_channels(uint32_t ch)
{
assert (ch > 0 && ch <= 8);
switch (ch) {
case 1: return CUBEB_LAYOUT_MONO;
case 2: return CUBEB_LAYOUT_STEREO;
case 3: return CUBEB_LAYOUT_3F;
case 4: return CUBEB_LAYOUT_QUAD;
case 5: return CUBEB_LAYOUT_3F2;
case 6: return CUBEB_LAYOUT_3F_LFE |
CHANNEL_SIDE_LEFT | CHANNEL_SIDE_RIGHT;
case 7: return CUBEB_LAYOUT_3F3R_LFE;
case 8: return CUBEB_LAYOUT_3F4_LFE;
}
// Never get here!
return CUBEB_LAYOUT_UNDEFINED;
}
static int
create_pa_stream(cubeb_stream * stm,
pa_stream ** pa_stm,
cubeb_stream_params * stream_params,
char const * stream_name)
{
assert(stm && stream_params);
assert(&stm->input_stream == pa_stm || (&stm->output_stream == pa_stm &&
(stream_params->layout == CUBEB_LAYOUT_UNDEFINED ||
(stream_params->layout != CUBEB_LAYOUT_UNDEFINED &&
cubeb_channel_layout_nb_channels(stream_params->layout) == stream_params->channels))));
if (stream_params->prefs & CUBEB_STREAM_PREF_LOOPBACK) {
return CUBEB_ERROR_NOT_SUPPORTED;
}
*pa_stm = NULL;
pa_sample_spec ss;
ss.format = to_pulse_format(stream_params->format);
if (ss.format == PA_SAMPLE_INVALID)
return CUBEB_ERROR_INVALID_FORMAT;
ss.rate = stream_params->rate;
if (stream_params->channels > UINT8_MAX)
return CUBEB_ERROR_INVALID_FORMAT;
ss.channels = (uint8_t) stream_params->channels;
if (stream_params->layout == CUBEB_LAYOUT_UNDEFINED) {
pa_channel_map cm;
if (stream_params->channels <= 8 &&
!WRAP(pa_channel_map_init_auto)(&cm, stream_params->channels, PA_CHANNEL_MAP_DEFAULT)) {
LOG("Layout undefined and PulseAudio's default layout has not been configured, guess one.");
layout_to_channel_map(pulse_default_layout_for_channels(stream_params->channels), &cm);
*pa_stm = WRAP(pa_stream_new)(stm->context->context, stream_name, &ss, &cm);
} else {
LOG("Layout undefined, PulseAudio will use its default.");
*pa_stm = WRAP(pa_stream_new)(stm->context->context, stream_name, &ss, NULL);
}
} else {
pa_channel_map cm;
layout_to_channel_map(stream_params->layout, &cm);
*pa_stm = WRAP(pa_stream_new)(stm->context->context, stream_name, &ss, &cm);
}
return (*pa_stm == NULL) ? CUBEB_ERROR : CUBEB_OK;
}
static pa_buffer_attr
set_buffering_attribute(unsigned int latency_frames, pa_sample_spec * sample_spec)
{
pa_buffer_attr battr;
battr.maxlength = -1;
battr.prebuf = -1;
battr.tlength = latency_frames * WRAP(pa_frame_size)(sample_spec);
battr.minreq = battr.tlength / 4;
battr.fragsize = battr.minreq;
LOG("Requested buffer attributes maxlength %u, tlength %u, prebuf %u, minreq %u, fragsize %u",
battr.maxlength, battr.tlength, battr.prebuf, battr.minreq, battr.fragsize);
return battr;
}
static int
pulse_stream_init(cubeb * context,
cubeb_stream ** stream,
char const * stream_name,
cubeb_devid input_device,
cubeb_stream_params * input_stream_params,
cubeb_devid output_device,
cubeb_stream_params * output_stream_params,
unsigned int latency_frames,
cubeb_data_callback data_callback,
cubeb_state_callback state_callback,
void * user_ptr)
{
cubeb_stream * stm;
pa_buffer_attr battr;
int r;
assert(context);
// If the connection failed for some reason, try to reconnect
if (context->error == 1 && pulse_context_init(context) != 0) {
return CUBEB_ERROR;
}
*stream = NULL;
stm = calloc(1, sizeof(*stm));
assert(stm);
stm->context = context;
stm->data_callback = data_callback;
stm->state_callback = state_callback;
stm->user_ptr = user_ptr;
stm->volume = PULSE_NO_GAIN;
stm->state = -1;
assert(stm->shutdown == 0);
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
if (output_stream_params) {
r = create_pa_stream(stm, &stm->output_stream, output_stream_params, stream_name);
if (r != CUBEB_OK) {
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
pulse_stream_destroy(stm);
return r;
}
stm->output_sample_spec = *(WRAP(pa_stream_get_sample_spec)(stm->output_stream));
WRAP(pa_stream_set_state_callback)(stm->output_stream, stream_state_callback, stm);
WRAP(pa_stream_set_write_callback)(stm->output_stream, stream_write_callback, stm);
battr = set_buffering_attribute(latency_frames, &stm->output_sample_spec);
WRAP(pa_stream_connect_playback)(stm->output_stream,
(char const *) output_device,
&battr,
PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY,
NULL, NULL);
}
// Set up input stream
if (input_stream_params) {
r = create_pa_stream(stm, &stm->input_stream, input_stream_params, stream_name);
if (r != CUBEB_OK) {
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
pulse_stream_destroy(stm);
return r;
}
stm->input_sample_spec = *(WRAP(pa_stream_get_sample_spec)(stm->input_stream));
WRAP(pa_stream_set_state_callback)(stm->input_stream, stream_state_callback, stm);
WRAP(pa_stream_set_read_callback)(stm->input_stream, stream_read_callback, stm);
battr = set_buffering_attribute(latency_frames, &stm->input_sample_spec);
WRAP(pa_stream_connect_record)(stm->input_stream,
(char const *) input_device,
&battr,
PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY);
}
r = wait_until_stream_ready(stm);
if (r == 0) {
/* force a timing update now, otherwise timing info does not become valid
until some point after initialization has completed. */
r = stream_update_timing_info(stm);
}
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
if (r != 0) {
pulse_stream_destroy(stm);
return CUBEB_ERROR;
}
if (g_cubeb_log_level) {
if (output_stream_params){
const pa_buffer_attr * output_att;
output_att = WRAP(pa_stream_get_buffer_attr)(stm->output_stream);
LOG("Output buffer attributes maxlength %u, tlength %u, prebuf %u, minreq %u, fragsize %u",output_att->maxlength, output_att->tlength,
output_att->prebuf, output_att->minreq, output_att->fragsize);
}
if (input_stream_params){
const pa_buffer_attr * input_att;
input_att = WRAP(pa_stream_get_buffer_attr)(stm->input_stream);
LOG("Input buffer attributes maxlength %u, tlength %u, prebuf %u, minreq %u, fragsize %u",input_att->maxlength, input_att->tlength,
input_att->prebuf, input_att->minreq, input_att->fragsize);
}
}
*stream = stm;
LOG("Cubeb stream (%p) init successful.", *stream);
return CUBEB_OK;
}
static void
pulse_stream_destroy(cubeb_stream * stm)
{
stream_cork(stm, CORK);
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
if (stm->output_stream) {
if (stm->drain_timer) {
/* there's no pa_rttime_free, so use this instead. */
WRAP(pa_threaded_mainloop_get_api)(stm->context->mainloop)->time_free(stm->drain_timer);
}
WRAP(pa_stream_set_state_callback)(stm->output_stream, NULL, NULL);
WRAP(pa_stream_set_write_callback)(stm->output_stream, NULL, NULL);
WRAP(pa_stream_disconnect)(stm->output_stream);
WRAP(pa_stream_unref)(stm->output_stream);
}
if (stm->input_stream) {
WRAP(pa_stream_set_state_callback)(stm->input_stream, NULL, NULL);
WRAP(pa_stream_set_read_callback)(stm->input_stream, NULL, NULL);
WRAP(pa_stream_disconnect)(stm->input_stream);
WRAP(pa_stream_unref)(stm->input_stream);
}
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
LOG("Cubeb stream (%p) destroyed successfully.", stm);
free(stm);
}
static void
pulse_defer_event_cb(pa_mainloop_api * a, void * userdata)
{
(void)a;
cubeb_stream * stm = userdata;
if (stm->shutdown) {
return;
}
size_t writable_size = WRAP(pa_stream_writable_size)(stm->output_stream);
trigger_user_callback(stm->output_stream, NULL, writable_size, stm);
}
static int
pulse_stream_start(cubeb_stream * stm)
{
stm->shutdown = 0;
stream_cork(stm, UNCORK | NOTIFY);
if (stm->output_stream && !stm->input_stream) {
/* On output only case need to manually call user cb once in order to make
* things roll. This is done via a defer event in order to execute it
* from PA server thread. */
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
WRAP(pa_mainloop_api_once)(WRAP(pa_threaded_mainloop_get_api)(stm->context->mainloop),
pulse_defer_event_cb, stm);
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
}
LOG("Cubeb stream (%p) started successfully.", stm);
return CUBEB_OK;
}
static int
pulse_stream_stop(cubeb_stream * stm)
{
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
stm->shutdown = 1;
// If draining is taking place wait to finish
while (stm->drain_timer) {
WRAP(pa_threaded_mainloop_wait)(stm->context->mainloop);
}
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
stream_cork(stm, CORK | NOTIFY);
LOG("Cubeb stream (%p) stopped successfully.", stm);
return CUBEB_OK;
}
static int
pulse_stream_get_position(cubeb_stream * stm, uint64_t * position)
{
int r, in_thread;
pa_usec_t r_usec;
uint64_t bytes;
if (!stm || !stm->output_stream) {
return CUBEB_ERROR;
}
in_thread = WRAP(pa_threaded_mainloop_in_thread)(stm->context->mainloop);
if (!in_thread) {
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
}
r = WRAP(pa_stream_get_time)(stm->output_stream, &r_usec);
if (!in_thread) {
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
}
if (r != 0) {
return CUBEB_ERROR;
}
bytes = WRAP(pa_usec_to_bytes)(r_usec, &stm->output_sample_spec);
*position = bytes / WRAP(pa_frame_size)(&stm->output_sample_spec);
return CUBEB_OK;
}
static int
pulse_stream_get_latency(cubeb_stream * stm, uint32_t * latency)
{
pa_usec_t r_usec;
int negative, r;
if (!stm || !stm->output_stream) {
return CUBEB_ERROR;
}
r = WRAP(pa_stream_get_latency)(stm->output_stream, &r_usec, &negative);
assert(!negative);
if (r) {
return CUBEB_ERROR;
}
*latency = r_usec * stm->output_sample_spec.rate / PA_USEC_PER_SEC;
return CUBEB_OK;
}
static void
volume_success(pa_context *c, int success, void *userdata)
{
(void)success;
(void)c;
cubeb_stream * stream = userdata;
assert(success);
WRAP(pa_threaded_mainloop_signal)(stream->context->mainloop, 0);
}
static void
rename_success(pa_stream *s, int success, void *userdata)
{
cubeb_stream * stream = userdata;
assert(success);
WRAP(pa_threaded_mainloop_signal)(stream->context->mainloop, 0);
}
static int
pulse_stream_set_volume(cubeb_stream * stm, float volume)
{
uint32_t index;
pa_operation * op;
pa_volume_t vol;
pa_cvolume cvol;
const pa_sample_spec * ss;
cubeb * ctx;
if (!stm->output_stream) {
return CUBEB_ERROR;
}
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
/* if the pulse daemon is configured to use flat volumes,
* apply our own gain instead of changing the input volume on the sink. */
ctx = stm->context;
if (ctx->default_sink_info &&
(ctx->default_sink_info->flags & PA_SINK_FLAT_VOLUME)) {
stm->volume = volume;
} else {
ss = WRAP(pa_stream_get_sample_spec)(stm->output_stream);
vol = WRAP(pa_sw_volume_from_linear)(volume);
WRAP(pa_cvolume_set)(&cvol, ss->channels, vol);
index = WRAP(pa_stream_get_index)(stm->output_stream);
op = WRAP(pa_context_set_sink_input_volume)(ctx->context,
index, &cvol, volume_success,
stm);
if (op) {
operation_wait(ctx, stm->output_stream, op);
WRAP(pa_operation_unref)(op);
}
}
WRAP(pa_threaded_mainloop_unlock)(ctx->mainloop);
return CUBEB_OK;
}
static int
pulse_stream_set_name(cubeb_stream * stm, char const * stream_name)
{
if (!stm || !stm->output_stream) {
return CUBEB_ERROR;
}
WRAP(pa_threaded_mainloop_lock)(stm->context->mainloop);
pa_operation * op =
WRAP(pa_stream_set_name)(stm->output_stream, stream_name, rename_success, stm);
if (op) {
operation_wait(stm->context, stm->output_stream, op);
WRAP(pa_operation_unref)(op);
}
WRAP(pa_threaded_mainloop_unlock)(stm->context->mainloop);
return CUBEB_OK;
}
typedef struct {
char * default_sink_name;
char * default_source_name;
cubeb_device_info * devinfo;
uint32_t max;
uint32_t count;
cubeb * context;
} pulse_dev_list_data;
static cubeb_device_fmt
pulse_format_to_cubeb_format(pa_sample_format_t format)
{
switch (format) {
case PA_SAMPLE_S16LE:
return CUBEB_DEVICE_FMT_S16LE;
case PA_SAMPLE_S16BE:
return CUBEB_DEVICE_FMT_S16BE;
case PA_SAMPLE_FLOAT32LE:
return CUBEB_DEVICE_FMT_F32LE;
case PA_SAMPLE_FLOAT32BE:
return CUBEB_DEVICE_FMT_F32BE;
default:
return CUBEB_DEVICE_FMT_F32NE;
}
}
static void
pulse_ensure_dev_list_data_list_size (pulse_dev_list_data * list_data)
{
if (list_data->count == list_data->max) {
list_data->max += 8;
list_data->devinfo = realloc(list_data->devinfo,
sizeof(cubeb_device_info) * list_data->max);
}
}
static cubeb_device_state
pulse_get_state_from_sink_port(pa_sink_port_info * info)
{
if (info != NULL) {
#if PA_CHECK_VERSION(2, 0, 0)
if (has_pulse_v2 && info->available == PA_PORT_AVAILABLE_NO)
return CUBEB_DEVICE_STATE_UNPLUGGED;
else /*if (info->available == PA_PORT_AVAILABLE_YES) + UNKNOWN */
#endif
return CUBEB_DEVICE_STATE_ENABLED;
}
return CUBEB_DEVICE_STATE_ENABLED;
}
static void
pulse_sink_info_cb(pa_context * context, const pa_sink_info * info,
int eol, void * user_data)
{
pulse_dev_list_data * list_data = user_data;
cubeb_device_info * devinfo;
char const * prop = NULL;
char const * device_id = NULL;
(void)context;
if (eol) {
WRAP(pa_threaded_mainloop_signal)(list_data->context->mainloop, 0);
return;
}
if (info == NULL)
return;
device_id = info->name;
if (intern_device_id(list_data->context, &device_id) != CUBEB_OK) {
assert(NULL);
return;
}
pulse_ensure_dev_list_data_list_size(list_data);
devinfo = &list_data->devinfo[list_data->count];
memset(devinfo, 0, sizeof(cubeb_device_info));
devinfo->device_id = device_id;
devinfo->devid = (cubeb_devid) devinfo->device_id;
devinfo->friendly_name = strdup(info->description);
prop = WRAP(pa_proplist_gets)(info->proplist, "sysfs.path");
if (prop)
devinfo->group_id = strdup(prop);
prop = WRAP(pa_proplist_gets)(info->proplist, "device.vendor.name");
if (prop)
devinfo->vendor_name = strdup(prop);
devinfo->type = CUBEB_DEVICE_TYPE_OUTPUT;
devinfo->state = pulse_get_state_from_sink_port(info->active_port);
devinfo->preferred = (strcmp(info->name, list_data->default_sink_name) == 0) ?
CUBEB_DEVICE_PREF_ALL : CUBEB_DEVICE_PREF_NONE;
devinfo->format = CUBEB_DEVICE_FMT_ALL;
devinfo->default_format = pulse_format_to_cubeb_format(info->sample_spec.format);
devinfo->max_channels = info->channel_map.channels;
devinfo->min_rate = 1;
devinfo->max_rate = PA_RATE_MAX;
devinfo->default_rate = info->sample_spec.rate;
devinfo->latency_lo = 0;
devinfo->latency_hi = 0;
list_data->count += 1;
}
static cubeb_device_state
pulse_get_state_from_source_port(pa_source_port_info * info)
{
if (info != NULL) {
#if PA_CHECK_VERSION(2, 0, 0)
if (has_pulse_v2 && info->available == PA_PORT_AVAILABLE_NO)
return CUBEB_DEVICE_STATE_UNPLUGGED;
else /*if (info->available == PA_PORT_AVAILABLE_YES) + UNKNOWN */
#endif
return CUBEB_DEVICE_STATE_ENABLED;
}
return CUBEB_DEVICE_STATE_ENABLED;
}
static void
pulse_source_info_cb(pa_context * context, const pa_source_info * info,
int eol, void * user_data)
{
pulse_dev_list_data * list_data = user_data;
cubeb_device_info * devinfo;
char const * prop = NULL;
char const * device_id = NULL;
(void)context;
if (eol) {
WRAP(pa_threaded_mainloop_signal)(list_data->context->mainloop, 0);
return;
}
device_id = info->name;
if (intern_device_id(list_data->context, &device_id) != CUBEB_OK) {
assert(NULL);
return;
}
pulse_ensure_dev_list_data_list_size(list_data);
devinfo = &list_data->devinfo[list_data->count];
memset(devinfo, 0, sizeof(cubeb_device_info));
devinfo->device_id = device_id;
devinfo->devid = (cubeb_devid) devinfo->device_id;
devinfo->friendly_name = strdup(info->description);
prop = WRAP(pa_proplist_gets)(info->proplist, "sysfs.path");
if (prop)
devinfo->group_id = strdup(prop);
prop = WRAP(pa_proplist_gets)(info->proplist, "device.vendor.name");
if (prop)
devinfo->vendor_name = strdup(prop);
devinfo->type = CUBEB_DEVICE_TYPE_INPUT;
devinfo->state = pulse_get_state_from_source_port(info->active_port);
devinfo->preferred = (strcmp(info->name, list_data->default_source_name) == 0) ?
CUBEB_DEVICE_PREF_ALL : CUBEB_DEVICE_PREF_NONE;
devinfo->format = CUBEB_DEVICE_FMT_ALL;
devinfo->default_format = pulse_format_to_cubeb_format(info->sample_spec.format);
devinfo->max_channels = info->channel_map.channels;
devinfo->min_rate = 1;
devinfo->max_rate = PA_RATE_MAX;
devinfo->default_rate = info->sample_spec.rate;
devinfo->latency_lo = 0;
devinfo->latency_hi = 0;
list_data->count += 1;
}
static void
pulse_server_info_cb(pa_context * c, const pa_server_info * i, void * userdata)
{
pulse_dev_list_data * list_data = userdata;
(void)c;
free(list_data->default_sink_name);
free(list_data->default_source_name);
list_data->default_sink_name =
i->default_sink_name ? strdup(i->default_sink_name) : NULL;
list_data->default_source_name =
i->default_source_name ? strdup(i->default_source_name) : NULL;
WRAP(pa_threaded_mainloop_signal)(list_data->context->mainloop, 0);
}
static int
pulse_enumerate_devices(cubeb * context, cubeb_device_type type,
cubeb_device_collection * collection)
{
pulse_dev_list_data user_data = { NULL, NULL, NULL, 0, 0, context };
pa_operation * o;
WRAP(pa_threaded_mainloop_lock)(context->mainloop);
o = WRAP(pa_context_get_server_info)(context->context,
pulse_server_info_cb, &user_data);
if (o) {
operation_wait(context, NULL, o);
WRAP(pa_operation_unref)(o);
}
if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
o = WRAP(pa_context_get_sink_info_list)(context->context,
pulse_sink_info_cb, &user_data);
if (o) {
operation_wait(context, NULL, o);
WRAP(pa_operation_unref)(o);
}
}
if (type & CUBEB_DEVICE_TYPE_INPUT) {
o = WRAP(pa_context_get_source_info_list)(context->context,
pulse_source_info_cb, &user_data);
if (o) {
operation_wait(context, NULL, o);
WRAP(pa_operation_unref)(o);
}
}
WRAP(pa_threaded_mainloop_unlock)(context->mainloop);
collection->device = user_data.devinfo;
collection->count = user_data.count;
free(user_data.default_sink_name);
free(user_data.default_source_name);
return CUBEB_OK;
}
static int
pulse_device_collection_destroy(cubeb * ctx, cubeb_device_collection * collection)
{
size_t n;
for (n = 0; n < collection->count; n++) {
free((void *) collection->device[n].friendly_name);
free((void *) collection->device[n].vendor_name);
free((void *) collection->device[n].group_id);
}
free(collection->device);
return CUBEB_OK;
}
static int
pulse_stream_get_current_device(cubeb_stream * stm, cubeb_device ** const device)
{
#if PA_CHECK_VERSION(0, 9, 8)
*device = calloc(1, sizeof(cubeb_device));
if (*device == NULL)
return CUBEB_ERROR;
if (stm->input_stream) {
const char * name = WRAP(pa_stream_get_device_name)(stm->input_stream);
(*device)->input_name = (name == NULL) ? NULL : strdup(name);
}
if (stm->output_stream) {
const char * name = WRAP(pa_stream_get_device_name)(stm->output_stream);
(*device)->output_name = (name == NULL) ? NULL : strdup(name);
}
return CUBEB_OK;
#else
return CUBEB_ERROR_NOT_SUPPORTED;
#endif
}
static int
pulse_stream_device_destroy(cubeb_stream * stream,
cubeb_device * device)
{
(void)stream;
free(device->input_name);
free(device->output_name);
free(device);
return CUBEB_OK;
}
static void
pulse_subscribe_callback(pa_context * ctx,
pa_subscription_event_type_t t,
uint32_t index, void * userdata)
{
(void)ctx;
cubeb * context = userdata;
switch (t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) {
case PA_SUBSCRIPTION_EVENT_SERVER:
if ((t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_CHANGE) {
LOG("Server changed %d", index);
WRAP(pa_context_get_server_info)(context->context, server_info_callback, context);
}
break;
case PA_SUBSCRIPTION_EVENT_SOURCE:
case PA_SUBSCRIPTION_EVENT_SINK:
if (g_cubeb_log_level) {
if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SOURCE &&
(t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_REMOVE) {
LOG("Removing source index %d", index);
} else if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SOURCE &&
(t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_NEW) {
LOG("Adding source index %d", index);
}
if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SINK &&
(t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_REMOVE) {
LOG("Removing sink index %d", index);
} else if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SINK &&
(t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_NEW) {
LOG("Adding sink index %d", index);
}
}
if ((t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_REMOVE ||
(t & PA_SUBSCRIPTION_EVENT_TYPE_MASK) == PA_SUBSCRIPTION_EVENT_NEW) {
if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SOURCE) {
context->input_collection_changed_callback(context, context->input_collection_changed_user_ptr);
}
if ((t & PA_SUBSCRIPTION_EVENT_FACILITY_MASK) == PA_SUBSCRIPTION_EVENT_SINK) {
context->output_collection_changed_callback(context, context->output_collection_changed_user_ptr);
}
}
break;
}
}
static void
subscribe_success(pa_context *c, int success, void *userdata)
{
(void)c;
cubeb * context = userdata;
assert(success);
WRAP(pa_threaded_mainloop_signal)(context->mainloop, 0);
}
static int
pulse_subscribe_notifications(cubeb * context, pa_subscription_mask_t mask) {
WRAP(pa_threaded_mainloop_lock)(context->mainloop);
WRAP(pa_context_set_subscribe_callback)(context->context, pulse_subscribe_callback, context);
pa_operation * o;
o = WRAP(pa_context_subscribe)(context->context, mask, subscribe_success, context);
if (o == NULL) {
WRAP(pa_threaded_mainloop_unlock)(context->mainloop);
LOG("Context subscribe failed");
return CUBEB_ERROR;
}
operation_wait(context, NULL, o);
WRAP(pa_operation_unref)(o);
WRAP(pa_threaded_mainloop_unlock)(context->mainloop);
return CUBEB_OK;
}
static int
pulse_register_device_collection_changed(cubeb * context,
cubeb_device_type devtype,
cubeb_device_collection_changed_callback collection_changed_callback,
void * user_ptr)
{
if (devtype & CUBEB_DEVICE_TYPE_INPUT) {
context->input_collection_changed_callback = collection_changed_callback;
context->input_collection_changed_user_ptr = user_ptr;
}
if (devtype & CUBEB_DEVICE_TYPE_OUTPUT) {
context->output_collection_changed_callback = collection_changed_callback;
context->output_collection_changed_user_ptr = user_ptr;
}
pa_subscription_mask_t mask = PA_SUBSCRIPTION_MASK_NULL;
if (context->input_collection_changed_callback) {
/* Input added or removed */
mask |= PA_SUBSCRIPTION_MASK_SOURCE;
}
if (context->output_collection_changed_callback) {
/* Output added or removed */
mask |= PA_SUBSCRIPTION_MASK_SINK;
}
/* Default device changed, this is always registered in order to update the
* `default_sink_info` when the default device changes. */
mask |= PA_SUBSCRIPTION_MASK_SERVER;
return pulse_subscribe_notifications(context, mask);
}
static struct cubeb_ops const pulse_ops = {
.init = pulse_init,
.get_backend_id = pulse_get_backend_id,
.get_max_channel_count = pulse_get_max_channel_count,
.get_min_latency = pulse_get_min_latency,
.get_preferred_sample_rate = pulse_get_preferred_sample_rate,
.enumerate_devices = pulse_enumerate_devices,
.device_collection_destroy = pulse_device_collection_destroy,
.destroy = pulse_destroy,
.stream_init = pulse_stream_init,
.stream_destroy = pulse_stream_destroy,
.stream_start = pulse_stream_start,
.stream_stop = pulse_stream_stop,
.stream_reset_default_device = NULL,
.stream_get_position = pulse_stream_get_position,
.stream_get_latency = pulse_stream_get_latency,
.stream_get_input_latency = NULL,
.stream_set_volume = pulse_stream_set_volume,
.stream_set_name = pulse_stream_set_name,
.stream_get_current_device = pulse_stream_get_current_device,
.stream_device_destroy = pulse_stream_device_destroy,
.stream_register_device_changed_callback = NULL,
.register_device_collection_changed = pulse_register_device_collection_changed
};