57 lines
1.9 KiB
Python
Executable file
57 lines
1.9 KiB
Python
Executable file
#!/usr/bin/python
|
|
|
|
from __future__ import print_function
|
|
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense
|
|
from keras.layers import LSTM
|
|
from keras.layers import GRU
|
|
from keras.models import load_model
|
|
from keras import backend as K
|
|
|
|
import numpy as np
|
|
|
|
def printVector(f, vector, name):
|
|
v = np.reshape(vector, (-1));
|
|
#print('static const float ', name, '[', len(v), '] = \n', file=f)
|
|
f.write('static const opus_int16 {}[{}] = {{\n '.format(name, len(v)))
|
|
for i in range(0, len(v)):
|
|
f.write('{}'.format(int(round(8192*v[i]))))
|
|
if (i!=len(v)-1):
|
|
f.write(',')
|
|
else:
|
|
break;
|
|
if (i%8==7):
|
|
f.write("\n ")
|
|
else:
|
|
f.write(" ")
|
|
#print(v, file=f)
|
|
f.write('\n};\n\n')
|
|
return;
|
|
|
|
def binary_crossentrop2(y_true, y_pred):
|
|
return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
|
|
|
|
|
model = load_model("weights.hdf5", custom_objects={'binary_crossentrop2': binary_crossentrop2})
|
|
|
|
weights = model.get_weights()
|
|
|
|
f = open('rnn_weights.c', 'w')
|
|
|
|
f.write('/*This file is automatically generated from a Keras model*/\n\n')
|
|
f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n')
|
|
|
|
printVector(f, weights[0], 'layer0_weights')
|
|
printVector(f, weights[1], 'layer0_bias')
|
|
printVector(f, weights[2], 'layer1_weights')
|
|
printVector(f, weights[3], 'layer1_recur_weights')
|
|
printVector(f, weights[4], 'layer1_bias')
|
|
printVector(f, weights[5], 'layer2_weights')
|
|
printVector(f, weights[6], 'layer2_bias')
|
|
|
|
f.write('const DenseLayer layer0 = {\n layer0_bias,\n layer0_weights,\n 25, 16, 0\n};\n\n')
|
|
f.write('const GRULayer layer1 = {\n layer1_bias,\n layer1_weights,\n layer1_recur_weights,\n 16, 12\n};\n\n')
|
|
f.write('const DenseLayer layer2 = {\n layer2_bias,\n layer2_weights,\n 12, 2, 1\n};\n\n')
|
|
|
|
f.close()
|