pineapple/externals/libressl/crypto/ec/ec2_smpl.c
2022-04-24 22:29:35 +02:00

785 lines
19 KiB
C
Executable file

/* $OpenBSD: ec2_smpl.c,v 1.23 2021/09/08 17:29:21 tb Exp $ */
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* The Elliptic Curve Public-Key Crypto Library (ECC Code) included
* herein is developed by SUN MICROSYSTEMS, INC., and is contributed
* to the OpenSSL project.
*
* The ECC Code is licensed pursuant to the OpenSSL open source
* license provided below.
*
* The software is originally written by Sheueling Chang Shantz and
* Douglas Stebila of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <openssl/opensslconf.h>
#include <openssl/err.h>
#include "ec_lcl.h"
#ifndef OPENSSL_NO_EC2M
const EC_METHOD *
EC_GF2m_simple_method(void)
{
static const EC_METHOD ret = {
.flags = EC_FLAGS_DEFAULT_OCT,
.field_type = NID_X9_62_characteristic_two_field,
.group_init = ec_GF2m_simple_group_init,
.group_finish = ec_GF2m_simple_group_finish,
.group_clear_finish = ec_GF2m_simple_group_clear_finish,
.group_copy = ec_GF2m_simple_group_copy,
.group_set_curve = ec_GF2m_simple_group_set_curve,
.group_get_curve = ec_GF2m_simple_group_get_curve,
.group_get_degree = ec_GF2m_simple_group_get_degree,
.group_order_bits = ec_group_simple_order_bits,
.group_check_discriminant =
ec_GF2m_simple_group_check_discriminant,
.point_init = ec_GF2m_simple_point_init,
.point_finish = ec_GF2m_simple_point_finish,
.point_clear_finish = ec_GF2m_simple_point_clear_finish,
.point_copy = ec_GF2m_simple_point_copy,
.point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity,
.point_set_affine_coordinates =
ec_GF2m_simple_point_set_affine_coordinates,
.point_get_affine_coordinates =
ec_GF2m_simple_point_get_affine_coordinates,
.add = ec_GF2m_simple_add,
.dbl = ec_GF2m_simple_dbl,
.invert = ec_GF2m_simple_invert,
.is_at_infinity = ec_GF2m_simple_is_at_infinity,
.is_on_curve = ec_GF2m_simple_is_on_curve,
.point_cmp = ec_GF2m_simple_cmp,
.make_affine = ec_GF2m_simple_make_affine,
.points_make_affine = ec_GF2m_simple_points_make_affine,
.mul_generator_ct = ec_GFp_simple_mul_generator_ct,
.mul_single_ct = ec_GFp_simple_mul_single_ct,
.mul_double_nonct = ec_GFp_simple_mul_double_nonct,
.precompute_mult = ec_GF2m_precompute_mult,
.have_precompute_mult = ec_GF2m_have_precompute_mult,
.field_mul = ec_GF2m_simple_field_mul,
.field_sqr = ec_GF2m_simple_field_sqr,
.field_div = ec_GF2m_simple_field_div,
.blind_coordinates = NULL,
};
return &ret;
}
/* Initialize a GF(2^m)-based EC_GROUP structure.
* Note that all other members are handled by EC_GROUP_new.
*/
int
ec_GF2m_simple_group_init(EC_GROUP * group)
{
BN_init(&group->field);
BN_init(&group->a);
BN_init(&group->b);
return 1;
}
/* Free a GF(2^m)-based EC_GROUP structure.
* Note that all other members are handled by EC_GROUP_free.
*/
void
ec_GF2m_simple_group_finish(EC_GROUP * group)
{
BN_free(&group->field);
BN_free(&group->a);
BN_free(&group->b);
}
/* Clear and free a GF(2^m)-based EC_GROUP structure.
* Note that all other members are handled by EC_GROUP_clear_free.
*/
void
ec_GF2m_simple_group_clear_finish(EC_GROUP * group)
{
BN_clear_free(&group->field);
BN_clear_free(&group->a);
BN_clear_free(&group->b);
group->poly[0] = 0;
group->poly[1] = 0;
group->poly[2] = 0;
group->poly[3] = 0;
group->poly[4] = 0;
group->poly[5] = -1;
}
/* Copy a GF(2^m)-based EC_GROUP structure.
* Note that all other members are handled by EC_GROUP_copy.
*/
int
ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src)
{
int i;
if (!BN_copy(&dest->field, &src->field))
return 0;
if (!BN_copy(&dest->a, &src->a))
return 0;
if (!BN_copy(&dest->b, &src->b))
return 0;
dest->poly[0] = src->poly[0];
dest->poly[1] = src->poly[1];
dest->poly[2] = src->poly[2];
dest->poly[3] = src->poly[3];
dest->poly[4] = src->poly[4];
dest->poly[5] = src->poly[5];
if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
return 0;
if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
return 0;
for (i = dest->a.top; i < dest->a.dmax; i++)
dest->a.d[i] = 0;
for (i = dest->b.top; i < dest->b.dmax; i++)
dest->b.d[i] = 0;
return 1;
}
/* Set the curve parameters of an EC_GROUP structure. */
int
ec_GF2m_simple_group_set_curve(EC_GROUP * group,
const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
{
int ret = 0, i;
/* group->field */
if (!BN_copy(&group->field, p))
goto err;
i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
if ((i != 5) && (i != 3)) {
ECerror(EC_R_UNSUPPORTED_FIELD);
goto err;
}
/* group->a */
if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
goto err;
if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
goto err;
for (i = group->a.top; i < group->a.dmax; i++)
group->a.d[i] = 0;
/* group->b */
if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
goto err;
if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
goto err;
for (i = group->b.top; i < group->b.dmax; i++)
group->b.d[i] = 0;
ret = 1;
err:
return ret;
}
/* Get the curve parameters of an EC_GROUP structure.
* If p, a, or b are NULL then there values will not be set but the method will return with success.
*/
int
ec_GF2m_simple_group_get_curve(const EC_GROUP *group,
BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
if (p != NULL) {
if (!BN_copy(p, &group->field))
return 0;
}
if (a != NULL) {
if (!BN_copy(a, &group->a))
goto err;
}
if (b != NULL) {
if (!BN_copy(b, &group->b))
goto err;
}
ret = 1;
err:
return ret;
}
/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
int
ec_GF2m_simple_group_get_degree(const EC_GROUP * group)
{
return BN_num_bits(&group->field) - 1;
}
/* Checks the discriminant of the curve.
* y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
*/
int
ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
{
int ret = 0;
BIGNUM *b;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
}
BN_CTX_start(ctx);
if ((b = BN_CTX_get(ctx)) == NULL)
goto err;
if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
goto err;
/*
* check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
* curve <=> b != 0 (mod p)
*/
if (BN_is_zero(b))
goto err;
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Initializes an EC_POINT. */
int
ec_GF2m_simple_point_init(EC_POINT * point)
{
BN_init(&point->X);
BN_init(&point->Y);
BN_init(&point->Z);
return 1;
}
/* Frees an EC_POINT. */
void
ec_GF2m_simple_point_finish(EC_POINT * point)
{
BN_free(&point->X);
BN_free(&point->Y);
BN_free(&point->Z);
}
/* Clears and frees an EC_POINT. */
void
ec_GF2m_simple_point_clear_finish(EC_POINT * point)
{
BN_clear_free(&point->X);
BN_clear_free(&point->Y);
BN_clear_free(&point->Z);
point->Z_is_one = 0;
}
/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
int
ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src)
{
if (!BN_copy(&dest->X, &src->X))
return 0;
if (!BN_copy(&dest->Y, &src->Y))
return 0;
if (!BN_copy(&dest->Z, &src->Z))
return 0;
dest->Z_is_one = src->Z_is_one;
return 1;
}
/* Set an EC_POINT to the point at infinity.
* A point at infinity is represented by having Z=0.
*/
int
ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
{
point->Z_is_one = 0;
BN_zero(&point->Z);
return 1;
}
/* Set the coordinates of an EC_POINT using affine coordinates.
* Note that the simple implementation only uses affine coordinates.
*/
int
ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
{
int ret = 0;
if (x == NULL || y == NULL) {
ECerror(ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (!BN_copy(&point->X, x))
goto err;
BN_set_negative(&point->X, 0);
if (!BN_copy(&point->Y, y))
goto err;
BN_set_negative(&point->Y, 0);
if (!BN_copy(&point->Z, BN_value_one()))
goto err;
BN_set_negative(&point->Z, 0);
point->Z_is_one = 1;
ret = 1;
err:
return ret;
}
/* Gets the affine coordinates of an EC_POINT.
* Note that the simple implementation only uses affine coordinates.
*/
int
ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
int ret = 0;
if (EC_POINT_is_at_infinity(group, point) > 0) {
ECerror(EC_R_POINT_AT_INFINITY);
return 0;
}
if (BN_cmp(&point->Z, BN_value_one())) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (x != NULL) {
if (!BN_copy(x, &point->X))
goto err;
BN_set_negative(x, 0);
}
if (y != NULL) {
if (!BN_copy(y, &point->Y))
goto err;
BN_set_negative(y, 0);
}
ret = 1;
err:
return ret;
}
/* Computes a + b and stores the result in r. r could be a or b, a could be b.
* Uses algorithm A.10.2 of IEEE P1363.
*/
int
ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a) > 0) {
if (!EC_POINT_copy(r, b))
return 0;
return 1;
}
if (EC_POINT_is_at_infinity(group, b) > 0) {
if (!EC_POINT_copy(r, a))
return 0;
return 1;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
if ((x0 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((y0 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((x1 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((y1 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((x2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((y2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((s = BN_CTX_get(ctx)) == NULL)
goto err;
if ((t = BN_CTX_get(ctx)) == NULL)
goto err;
if (a->Z_is_one) {
if (!BN_copy(x0, &a->X))
goto err;
if (!BN_copy(y0, &a->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
goto err;
}
if (b->Z_is_one) {
if (!BN_copy(x1, &b->X))
goto err;
if (!BN_copy(y1, &b->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
goto err;
}
if (BN_GF2m_cmp(x0, x1)) {
if (!BN_GF2m_add(t, x0, x1))
goto err;
if (!BN_GF2m_add(s, y0, y1))
goto err;
if (!group->meth->field_div(group, s, s, t, ctx))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, &group->a))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, t))
goto err;
} else {
if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
if (!EC_POINT_set_to_infinity(group, r))
goto err;
ret = 1;
goto err;
}
if (!group->meth->field_div(group, s, y1, x1, ctx))
goto err;
if (!BN_GF2m_add(s, s, x1))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, &group->a))
goto err;
}
if (!BN_GF2m_add(y2, x1, x2))
goto err;
if (!group->meth->field_mul(group, y2, y2, s, ctx))
goto err;
if (!BN_GF2m_add(y2, y2, x2))
goto err;
if (!BN_GF2m_add(y2, y2, y1))
goto err;
if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Computes 2 * a and stores the result in r. r could be a.
* Uses algorithm A.10.2 of IEEE P1363.
*/
int
ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx)
{
return ec_GF2m_simple_add(group, r, a, a, ctx);
}
int
ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y))
/* point is its own inverse */
return 1;
if (!EC_POINT_make_affine(group, point, ctx))
return 0;
return BN_GF2m_add(&point->Y, &point->X, &point->Y);
}
/* Indicates whether the given point is the point at infinity. */
int
ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
{
return BN_is_zero(&point->Z);
}
/* Determines whether the given EC_POINT is an actual point on the curve defined
* in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
* y^2 + x*y = x^3 + a*x^2 + b.
*/
int
ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
{
int ret = -1;
BN_CTX *new_ctx = NULL;
BIGNUM *lh, *y2;
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
if (EC_POINT_is_at_infinity(group, point) > 0)
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
/* only support affine coordinates */
if (!point->Z_is_one)
return -1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
if ((y2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((lh = BN_CTX_get(ctx)) == NULL)
goto err;
/*
* We have a curve defined by a Weierstrass equation y^2 + x*y = x^3
* + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x
* + y ) * x + b + y^2 = 0
*/
if (!BN_GF2m_add(lh, &point->X, &group->a))
goto err;
if (!field_mul(group, lh, lh, &point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, &point->Y))
goto err;
if (!field_mul(group, lh, lh, &point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, &group->b))
goto err;
if (!field_sqr(group, y2, &point->Y, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, y2))
goto err;
ret = BN_is_zero(lh);
err:
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Indicates whether two points are equal.
* Return values:
* -1 error
* 0 equal (in affine coordinates)
* 1 not equal
*/
int
ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
BIGNUM *aX, *aY, *bX, *bY;
BN_CTX *new_ctx = NULL;
int ret = -1;
if (EC_POINT_is_at_infinity(group, a) > 0) {
return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1;
}
if (EC_POINT_is_at_infinity(group, b) > 0)
return 1;
if (a->Z_is_one && b->Z_is_one) {
return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
if ((aX = BN_CTX_get(ctx)) == NULL)
goto err;
if ((aY = BN_CTX_get(ctx)) == NULL)
goto err;
if ((bX = BN_CTX_get(ctx)) == NULL)
goto err;
if ((bY = BN_CTX_get(ctx)) == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
goto err;
if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
goto err;
ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
err:
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Forces the given EC_POINT to internally use affine coordinates. */
int
ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
int ret = 0;
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0)
return 1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
if ((x = BN_CTX_get(ctx)) == NULL)
goto err;
if ((y = BN_CTX_get(ctx)) == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
goto err;
if (!BN_copy(&point->X, x))
goto err;
if (!BN_copy(&point->Y, y))
goto err;
if (!BN_one(&point->Z))
goto err;
ret = 1;
err:
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
int
ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
EC_POINT *points[], BN_CTX *ctx)
{
size_t i;
for (i = 0; i < num; i++) {
if (!group->meth->make_affine(group, points[i], ctx))
return 0;
}
return 1;
}
/* Wrapper to simple binary polynomial field multiplication implementation. */
int
ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
}
/* Wrapper to simple binary polynomial field squaring implementation. */
int
ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
{
return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
}
/* Wrapper to simple binary polynomial field division implementation. */
int
ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
}
#endif