pineapple/externals/soundtouch/src/PeakFinder.cpp
2020-12-28 15:15:37 +00:00

286 lines
8 KiB
C++
Executable file

////////////////////////////////////////////////////////////////////////////////
///
/// Peak detection routine.
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2015-05-18 18:22:02 +0300 (ma, 18 touko 2015) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.cpp 213 2015-05-18 15:22:02Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include "PeakFinder.h"
using namespace soundtouch;
#define max(x, y) (((x) > (y)) ? (x) : (y))
PeakFinder::PeakFinder()
{
minPos = maxPos = 0;
}
// Finds real 'top' of a peak hump from neighnourhood of the given 'peakpos'.
int PeakFinder::findTop(const float *data, int peakpos) const
{
int i;
int start, end;
float refvalue;
refvalue = data[peakpos];
// seek within �10 points
start = peakpos - 10;
if (start < minPos) start = minPos;
end = peakpos + 10;
if (end > maxPos) end = maxPos;
for (i = start; i <= end; i ++)
{
if (data[i] > refvalue)
{
peakpos = i;
refvalue = data[i];
}
}
// failure if max value is at edges of seek range => it's not peak, it's at slope.
if ((peakpos == start) || (peakpos == end)) return 0;
return peakpos;
}
// Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
// to direction defined by 'direction' until next 'hump' after minimum value will
// begin
int PeakFinder::findGround(const float *data, int peakpos, int direction) const
{
int lowpos;
int pos;
int climb_count;
float refvalue;
float delta;
climb_count = 0;
refvalue = data[peakpos];
lowpos = peakpos;
pos = peakpos;
while ((pos > minPos+1) && (pos < maxPos-1))
{
int prevpos;
prevpos = pos;
pos += direction;
// calculate derivate
delta = data[pos] - data[prevpos];
if (delta <= 0)
{
// going downhill, ok
if (climb_count)
{
climb_count --; // decrease climb count
}
// check if new minimum found
if (data[pos] < refvalue)
{
// new minimum found
lowpos = pos;
refvalue = data[pos];
}
}
else
{
// going uphill, increase climbing counter
climb_count ++;
if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
}
}
return lowpos;
}
// Find offset where the value crosses the given level, when starting from 'peakpos' and
// proceeds to direction defined in 'direction'
int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
{
float peaklevel;
int pos;
peaklevel = data[peakpos];
assert(peaklevel >= level);
pos = peakpos;
while ((pos >= minPos) && (pos < maxPos))
{
if (data[pos + direction] < level) return pos; // crossing found
pos += direction;
}
return -1; // not found
}
// Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
{
int i;
float sum;
float wsum;
sum = 0;
wsum = 0;
for (i = firstPos; i <= lastPos; i ++)
{
sum += (float)i * data[i];
wsum += data[i];
}
if (wsum < 1e-6) return 0;
return sum / wsum;
}
/// get exact center of peak near given position by calculating local mass of center
double PeakFinder::getPeakCenter(const float *data, int peakpos) const
{
float peakLevel; // peak level
int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
float cutLevel; // cutting value
float groundLevel; // ground level of the peak
int gp1, gp2; // bottom positions of the peak 'hump'
// find ground positions.
gp1 = findGround(data, peakpos, -1);
gp2 = findGround(data, peakpos, 1);
peakLevel = data[peakpos];
if (gp1 == gp2)
{
// avoid rounding errors when all are equal
assert(gp1 == peakpos);
cutLevel = groundLevel = peakLevel;
} else {
// get average of the ground levels
groundLevel = 0.5f * (data[gp1] + data[gp2]);
// calculate 70%-level of the peak
cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
}
// find mid-level crossings
crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
// calculate mass center of the peak surroundings
return calcMassCenter(data, crosspos1, crosspos2);
}
double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
{
int i;
int peakpos; // position of peak level
double highPeak, peak;
this->minPos = aminPos;
this->maxPos = amaxPos;
// find absolute peak
peakpos = minPos;
peak = data[minPos];
for (i = minPos + 1; i < maxPos; i ++)
{
if (data[i] > peak)
{
peak = data[i];
peakpos = i;
}
}
// Calculate exact location of the highest peak mass center
highPeak = getPeakCenter(data, peakpos);
peak = highPeak;
// Now check if the highest peak were in fact harmonic of the true base beat peak
// - sometimes the highest peak can be Nth harmonic of the true base peak yet
// just a slightly higher than the true base
for (i = 3; i < 10; i ++)
{
double peaktmp, harmonic;
int i1,i2;
harmonic = (double)i * 0.5;
peakpos = (int)(highPeak / harmonic + 0.5f);
if (peakpos < minPos) break;
peakpos = findTop(data, peakpos); // seek true local maximum index
if (peakpos == 0) continue; // no local max here
// calculate mass-center of possible harmonic peak
peaktmp = getPeakCenter(data, peakpos);
// accept harmonic peak if
// (a) it is found
// (b) is within �4% of the expected harmonic interval
// (c) has at least half x-corr value of the max. peak
double diff = harmonic * peaktmp / highPeak;
if ((diff < 0.96) || (diff > 1.04)) continue; // peak too afar from expected
// now compare to highest detected peak
i1 = (int)(highPeak + 0.5);
i2 = (int)(peaktmp + 0.5);
if (data[i2] >= 0.4*data[i1])
{
// The harmonic is at least half as high primary peak,
// thus use the harmonic peak instead
peak = peaktmp;
}
}
return peak;
}