early-access version 3524

This commit is contained in:
pineappleEA 2023-04-23 14:05:41 +02:00
parent ab28951bc0
commit 4a571b3057
49 changed files with 2542 additions and 1485 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 3520.
This is the source code for early-access 3524.
## Legal Notice

View file

@ -7,7 +7,6 @@
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/memory.h"
namespace AudioCore::AudioRenderer::ADSP {

View file

@ -13,7 +13,6 @@
#include "common/thread.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
MICROPROFILE_DEFINE(Audio_Renderer, "Audio", "DSP", MP_RGB(60, 19, 97));
@ -144,6 +143,7 @@ void AudioRenderer::ThreadFunc() {
mailbox->ADSPSendMessage(RenderMessage::AudioRenderer_InitializeOK);
// 0.12 seconds (2304000 / 19200000)
constexpr u64 max_process_time{2'304'000ULL};
while (true) {
@ -179,8 +179,7 @@ void AudioRenderer::ThreadFunc() {
u64 max_time{max_process_time};
if (index == 1 && command_buffer.applet_resource_user_id ==
mailbox->GetCommandBuffer(0).applet_resource_user_id) {
max_time = max_process_time -
Core::Timing::CyclesToNs(render_times_taken[0]).count();
max_time = max_process_time - render_times_taken[0];
if (render_times_taken[0] > max_process_time) {
max_time = 0;
}

View file

@ -9,7 +9,6 @@
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/memory.h"
namespace AudioCore::AudioRenderer::ADSP {

View file

@ -5,7 +5,6 @@
#include "audio_core/renderer/command/performance/performance.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
namespace AudioCore::AudioRenderer {
@ -18,20 +17,18 @@ void PerformanceCommand::Process(const ADSP::CommandListProcessor& processor) {
auto base{entry_address.translated_address};
if (state == PerformanceState::Start) {
auto start_time_ptr{reinterpret_cast<u32*>(base + entry_address.entry_start_time_offset)};
*start_time_ptr = static_cast<u32>(
Core::Timing::CyclesToUs(processor.system->CoreTiming().GetClockTicks() -
processor.start_time - processor.current_processing_time)
.count());
*start_time_ptr =
static_cast<u32>(processor.system->CoreTiming().GetClockTicks() - processor.start_time -
processor.current_processing_time);
} else if (state == PerformanceState::Stop) {
auto processed_time_ptr{
reinterpret_cast<u32*>(base + entry_address.entry_processed_time_offset)};
auto entry_count_ptr{
reinterpret_cast<u32*>(base + entry_address.header_entry_count_offset)};
*processed_time_ptr = static_cast<u32>(
Core::Timing::CyclesToUs(processor.system->CoreTiming().GetClockTicks() -
processor.start_time - processor.current_processing_time)
.count());
*processed_time_ptr =
static_cast<u32>(processor.system->CoreTiming().GetClockTicks() - processor.start_time -
processor.current_processing_time);
(*entry_count_ptr)++;
}
}

View file

@ -15,7 +15,6 @@
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
namespace AudioCore::Sink {

View file

@ -164,6 +164,8 @@ if(ARCHITECTURE_x86_64)
x64/cpu_wait.h
x64/native_clock.cpp
x64/native_clock.h
x64/rdtsc.cpp
x64/rdtsc.h
x64/xbyak_abi.h
x64/xbyak_util.h
)

View file

@ -28,13 +28,12 @@ static s64 GetSystemTimeNS() {
// GetSystemTimePreciseAsFileTime returns the file time in 100ns units.
static constexpr s64 Multiplier = 100;
// Convert Windows epoch to Unix epoch.
static constexpr s64 WindowsEpochToUnixEpochNS = 0x19DB1DED53E8000LL;
static constexpr s64 WindowsEpochToUnixEpoch = 0x19DB1DED53E8000LL;
FILETIME filetime;
GetSystemTimePreciseAsFileTime(&filetime);
return Multiplier * ((static_cast<s64>(filetime.dwHighDateTime) << 32) +
static_cast<s64>(filetime.dwLowDateTime)) -
WindowsEpochToUnixEpochNS;
static_cast<s64>(filetime.dwLowDateTime) - WindowsEpochToUnixEpoch);
}
#endif

View file

@ -2,88 +2,71 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/steady_clock.h"
#include "common/uint128.h"
#include "common/wall_clock.h"
#ifdef ARCHITECTURE_x86_64
#include "common/x64/cpu_detect.h"
#include "common/x64/native_clock.h"
#include "common/x64/rdtsc.h"
#endif
namespace Common {
class StandardWallClock final : public WallClock {
public:
explicit StandardWallClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_)
: WallClock{emulated_cpu_frequency_, emulated_clock_frequency_, false},
start_time{SteadyClock::Now()} {}
explicit StandardWallClock() : start_time{SteadyClock::Now()} {}
std::chrono::nanoseconds GetTimeNS() override {
std::chrono::nanoseconds GetTimeNS() const override {
return SteadyClock::Now() - start_time;
}
std::chrono::microseconds GetTimeUS() override {
return std::chrono::duration_cast<std::chrono::microseconds>(GetTimeNS());
std::chrono::microseconds GetTimeUS() const override {
return static_cast<std::chrono::microseconds>(GetHostTicksElapsed() / NsToUsRatio::den);
}
std::chrono::milliseconds GetTimeMS() override {
return std::chrono::duration_cast<std::chrono::milliseconds>(GetTimeNS());
std::chrono::milliseconds GetTimeMS() const override {
return static_cast<std::chrono::milliseconds>(GetHostTicksElapsed() / NsToMsRatio::den);
}
u64 GetClockCycles() override {
const u128 temp = Common::Multiply64Into128(GetTimeNS().count(), emulated_clock_frequency);
return Common::Divide128On32(temp, NS_RATIO).first;
u64 GetCNTPCT() const override {
return GetHostTicksElapsed() * NsToCNTPCTRatio::num / NsToCNTPCTRatio::den;
}
u64 GetCPUCycles() override {
const u128 temp = Common::Multiply64Into128(GetTimeNS().count(), emulated_cpu_frequency);
return Common::Divide128On32(temp, NS_RATIO).first;
u64 GetHostTicksNow() const override {
return static_cast<u64>(SteadyClock::Now().time_since_epoch().count());
}
void Pause([[maybe_unused]] bool is_paused) override {
// Do nothing in this clock type.
u64 GetHostTicksElapsed() const override {
return static_cast<u64>(GetTimeNS().count());
}
bool IsNative() const override {
return false;
}
private:
SteadyClock::time_point start_time;
};
std::unique_ptr<WallClock> CreateOptimalClock() {
#ifdef ARCHITECTURE_x86_64
std::unique_ptr<WallClock> CreateBestMatchingClock(u64 emulated_cpu_frequency,
u64 emulated_clock_frequency) {
const auto& caps = GetCPUCaps();
u64 rtsc_frequency = 0;
if (caps.invariant_tsc) {
rtsc_frequency = caps.tsc_frequency ? caps.tsc_frequency : EstimateRDTSCFrequency();
}
// Fallback to StandardWallClock if the hardware TSC does not have the precision greater than:
// - A nanosecond
// - The emulated CPU frequency
// - The emulated clock counter frequency (CNTFRQ)
if (rtsc_frequency <= WallClock::NS_RATIO || rtsc_frequency <= emulated_cpu_frequency ||
rtsc_frequency <= emulated_clock_frequency) {
return std::make_unique<StandardWallClock>(emulated_cpu_frequency,
emulated_clock_frequency);
if (caps.invariant_tsc && caps.tsc_frequency >= WallClock::CNTFRQ) {
return std::make_unique<X64::NativeClock>(caps.tsc_frequency);
} else {
return std::make_unique<X64::NativeClock>(emulated_cpu_frequency, emulated_clock_frequency,
rtsc_frequency);
// Fallback to StandardWallClock if the hardware TSC
// - Is not invariant
// - Is not more precise than CNTFRQ
return std::make_unique<StandardWallClock>();
}
}
#else
std::unique_ptr<WallClock> CreateBestMatchingClock(u64 emulated_cpu_frequency,
u64 emulated_clock_frequency) {
return std::make_unique<StandardWallClock>(emulated_cpu_frequency, emulated_clock_frequency);
return std::make_unique<StandardWallClock>();
#endif
}
#endif
std::unique_ptr<WallClock> CreateStandardWallClock(u64 emulated_cpu_frequency,
u64 emulated_clock_frequency) {
return std::make_unique<StandardWallClock>(emulated_cpu_frequency, emulated_clock_frequency);
std::unique_ptr<WallClock> CreateStandardWallClock() {
return std::make_unique<StandardWallClock>();
}
} // namespace Common

View file

@ -5,6 +5,7 @@
#include <chrono>
#include <memory>
#include <ratio>
#include "common/common_types.h"
@ -12,50 +13,60 @@ namespace Common {
class WallClock {
public:
static constexpr u64 NS_RATIO = 1'000'000'000;
static constexpr u64 US_RATIO = 1'000'000;
static constexpr u64 MS_RATIO = 1'000;
static constexpr u64 CNTFRQ = 19'200'000; // CNTPCT_EL0 Frequency = 19.2 MHz
virtual ~WallClock() = default;
/// Returns current wall time in nanoseconds
[[nodiscard]] virtual std::chrono::nanoseconds GetTimeNS() = 0;
/// @returns The time in nanoseconds since the construction of this clock.
virtual std::chrono::nanoseconds GetTimeNS() const = 0;
/// Returns current wall time in microseconds
[[nodiscard]] virtual std::chrono::microseconds GetTimeUS() = 0;
/// @returns The time in microseconds since the construction of this clock.
virtual std::chrono::microseconds GetTimeUS() const = 0;
/// Returns current wall time in milliseconds
[[nodiscard]] virtual std::chrono::milliseconds GetTimeMS() = 0;
/// @returns The time in milliseconds since the construction of this clock.
virtual std::chrono::milliseconds GetTimeMS() const = 0;
/// Returns current wall time in emulated clock cycles
[[nodiscard]] virtual u64 GetClockCycles() = 0;
/// @returns The guest CNTPCT ticks since the construction of this clock.
virtual u64 GetCNTPCT() const = 0;
/// Returns current wall time in emulated cpu cycles
[[nodiscard]] virtual u64 GetCPUCycles() = 0;
/// @returns The raw host timer ticks since an indeterminate epoch.
virtual u64 GetHostTicksNow() const = 0;
virtual void Pause(bool is_paused) = 0;
/// @returns The raw host timer ticks since the construction of this clock.
virtual u64 GetHostTicksElapsed() const = 0;
/// Tells if the wall clock, uses the host CPU's hardware clock
[[nodiscard]] bool IsNative() const {
return is_native;
/// @returns Whether the clock directly uses the host's hardware clock.
virtual bool IsNative() const = 0;
static inline u64 NSToCNTPCT(u64 ns) {
return ns * NsToCNTPCTRatio::num / NsToCNTPCTRatio::den;
}
static inline u64 USToCNTPCT(u64 us) {
return us * UsToCNTPCTRatio::num / UsToCNTPCTRatio::den;
}
static inline u64 CNTPCTToNS(u64 cntpct) {
return cntpct * NsToCNTPCTRatio::den / NsToCNTPCTRatio::num;
}
static inline u64 CNTPCTToUS(u64 cntpct) {
return cntpct * UsToCNTPCTRatio::den / UsToCNTPCTRatio::num;
}
protected:
explicit WallClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_, bool is_native_)
: emulated_cpu_frequency{emulated_cpu_frequency_},
emulated_clock_frequency{emulated_clock_frequency_}, is_native{is_native_} {}
using NsRatio = std::nano;
using UsRatio = std::micro;
using MsRatio = std::milli;
u64 emulated_cpu_frequency;
u64 emulated_clock_frequency;
private:
bool is_native;
using NsToUsRatio = std::ratio_divide<std::nano, std::micro>;
using NsToMsRatio = std::ratio_divide<std::nano, std::milli>;
using NsToCNTPCTRatio = std::ratio<CNTFRQ, std::nano::den>;
using UsToCNTPCTRatio = std::ratio<CNTFRQ, std::micro::den>;
};
[[nodiscard]] std::unique_ptr<WallClock> CreateBestMatchingClock(u64 emulated_cpu_frequency,
u64 emulated_clock_frequency);
std::unique_ptr<WallClock> CreateOptimalClock();
[[nodiscard]] std::unique_ptr<WallClock> CreateStandardWallClock(u64 emulated_cpu_frequency,
u64 emulated_clock_frequency);
std::unique_ptr<WallClock> CreateStandardWallClock();
} // namespace Common

View file

@ -14,6 +14,7 @@
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/x64/cpu_detect.h"
#include "common/x64/rdtsc.h"
#ifdef _WIN32
#include <windows.h>
@ -187,6 +188,8 @@ static CPUCaps Detect() {
caps.tsc_frequency = static_cast<u64>(caps.crystal_frequency) *
caps.tsc_crystal_ratio_numerator /
caps.tsc_crystal_ratio_denominator;
} else {
caps.tsc_frequency = X64::EstimateRDTSCFrequency();
}
}

View file

@ -9,19 +9,11 @@
#include "common/x64/cpu_detect.h"
#include "common/x64/cpu_wait.h"
#include "common/x64/rdtsc.h"
namespace Common::X64 {
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
__forceinline static void TPAUSE() {
// 100,000 cycles is a reasonable amount of time to wait to save on CPU resources.
// For reference:
@ -32,16 +24,6 @@ __forceinline static void TPAUSE() {
_tpause(0, FencedRDTSC() + PauseCycles);
}
#else
static u64 FencedRDTSC() {
u64 eax;
u64 edx;
asm volatile("lfence\n\t"
"rdtsc\n\t"
"lfence\n\t"
: "=a"(eax), "=d"(edx));
return (edx << 32) | eax;
}
static void TPAUSE() {
// 100,000 cycles is a reasonable amount of time to wait to save on CPU resources.
// For reference:

View file

@ -1,164 +1,45 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <chrono>
#include <thread>
#include "common/atomic_ops.h"
#include "common/steady_clock.h"
#include "common/uint128.h"
#include "common/x64/native_clock.h"
#include "common/x64/rdtsc.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace Common::X64 {
namespace Common {
NativeClock::NativeClock(u64 rdtsc_frequency_)
: start_ticks{FencedRDTSC()}, rdtsc_frequency{rdtsc_frequency_},
ns_rdtsc_factor{GetFixedPoint64Factor(NsRatio::den, rdtsc_frequency)},
us_rdtsc_factor{GetFixedPoint64Factor(UsRatio::den, rdtsc_frequency)},
ms_rdtsc_factor{GetFixedPoint64Factor(MsRatio::den, rdtsc_frequency)},
cntpct_rdtsc_factor{GetFixedPoint64Factor(CNTFRQ, rdtsc_frequency)} {}
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
#else
static u64 FencedRDTSC() {
u64 eax;
u64 edx;
asm volatile("lfence\n\t"
"rdtsc\n\t"
"lfence\n\t"
: "=a"(eax), "=d"(edx));
return (edx << 32) | eax;
}
#endif
template <u64 Nearest>
static u64 RoundToNearest(u64 value) {
const auto mod = value % Nearest;
return mod >= (Nearest / 2) ? (value - mod + Nearest) : (value - mod);
std::chrono::nanoseconds NativeClock::GetTimeNS() const {
return std::chrono::nanoseconds{MultiplyHigh(GetHostTicksElapsed(), ns_rdtsc_factor)};
}
u64 EstimateRDTSCFrequency() {
// Discard the first result measuring the rdtsc.
FencedRDTSC();
std::this_thread::sleep_for(std::chrono::milliseconds{1});
FencedRDTSC();
// Get the current time.
const auto start_time = Common::RealTimeClock::Now();
const u64 tsc_start = FencedRDTSC();
// Wait for 250 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{250});
const auto end_time = Common::RealTimeClock::Now();
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return RoundToNearest<1000>(tsc_freq);
std::chrono::microseconds NativeClock::GetTimeUS() const {
return std::chrono::microseconds{MultiplyHigh(GetHostTicksElapsed(), us_rdtsc_factor)};
}
namespace X64 {
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_)
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
rtsc_frequency_} {
// Thread to re-adjust the RDTSC frequency after 10 seconds has elapsed.
time_sync_thread = std::jthread{[this](std::stop_token token) {
// Get the current time.
const auto start_time = Common::RealTimeClock::Now();
const u64 tsc_start = FencedRDTSC();
// Wait for 10 seconds.
if (!Common::StoppableTimedWait(token, std::chrono::seconds{10})) {
return;
}
const auto end_time = Common::RealTimeClock::Now();
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
rtsc_frequency = tsc_freq;
CalculateAndSetFactors();
}};
time_point.inner.last_measure = FencedRDTSC();
time_point.inner.accumulated_ticks = 0U;
CalculateAndSetFactors();
std::chrono::milliseconds NativeClock::GetTimeMS() const {
return std::chrono::milliseconds{MultiplyHigh(GetHostTicksElapsed(), ms_rdtsc_factor)};
}
u64 NativeClock::GetRTSC() {
TimePoint new_time_point{};
TimePoint current_time_point{};
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
do {
const u64 current_measure = FencedRDTSC();
u64 diff = current_measure - current_time_point.inner.last_measure;
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
new_time_point.inner.last_measure = current_measure > current_time_point.inner.last_measure
? current_measure
: current_time_point.inner.last_measure;
new_time_point.inner.accumulated_ticks = current_time_point.inner.accumulated_ticks + diff;
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack, current_time_point.pack));
return new_time_point.inner.accumulated_ticks;
u64 NativeClock::GetCNTPCT() const {
return MultiplyHigh(GetHostTicksElapsed(), cntpct_rdtsc_factor);
}
void NativeClock::Pause(bool is_paused) {
if (!is_paused) {
TimePoint current_time_point{};
TimePoint new_time_point{};
current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
do {
new_time_point.pack = current_time_point.pack;
new_time_point.inner.last_measure = FencedRDTSC();
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack, current_time_point.pack));
}
u64 NativeClock::GetHostTicksNow() const {
return FencedRDTSC();
}
std::chrono::nanoseconds NativeClock::GetTimeNS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::nanoseconds{MultiplyHigh(rtsc_value, ns_rtsc_factor)};
u64 NativeClock::GetHostTicksElapsed() const {
return FencedRDTSC() - start_ticks;
}
std::chrono::microseconds NativeClock::GetTimeUS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::microseconds{MultiplyHigh(rtsc_value, us_rtsc_factor)};
bool NativeClock::IsNative() const {
return true;
}
std::chrono::milliseconds NativeClock::GetTimeMS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::milliseconds{MultiplyHigh(rtsc_value, ms_rtsc_factor)};
}
u64 NativeClock::GetClockCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, clock_rtsc_factor);
}
u64 NativeClock::GetCPUCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, cpu_rtsc_factor);
}
void NativeClock::CalculateAndSetFactors() {
ns_rtsc_factor = GetFixedPoint64Factor(NS_RATIO, rtsc_frequency);
us_rtsc_factor = GetFixedPoint64Factor(US_RATIO, rtsc_frequency);
ms_rtsc_factor = GetFixedPoint64Factor(MS_RATIO, rtsc_frequency);
clock_rtsc_factor = GetFixedPoint64Factor(emulated_clock_frequency, rtsc_frequency);
cpu_rtsc_factor = GetFixedPoint64Factor(emulated_cpu_frequency, rtsc_frequency);
}
} // namespace X64
} // namespace Common
} // namespace Common::X64

View file

@ -3,58 +3,36 @@
#pragma once
#include "common/polyfill_thread.h"
#include "common/wall_clock.h"
namespace Common {
namespace Common::X64 {
namespace X64 {
class NativeClock final : public WallClock {
public:
explicit NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_);
explicit NativeClock(u64 rdtsc_frequency_);
std::chrono::nanoseconds GetTimeNS() override;
std::chrono::nanoseconds GetTimeNS() const override;
std::chrono::microseconds GetTimeUS() override;
std::chrono::microseconds GetTimeUS() const override;
std::chrono::milliseconds GetTimeMS() override;
std::chrono::milliseconds GetTimeMS() const override;
u64 GetClockCycles() override;
u64 GetCNTPCT() const override;
u64 GetCPUCycles() override;
u64 GetHostTicksNow() const override;
void Pause(bool is_paused) override;
u64 GetHostTicksElapsed() const override;
bool IsNative() const override;
private:
u64 GetRTSC();
u64 start_ticks;
u64 rdtsc_frequency;
void CalculateAndSetFactors();
union alignas(16) TimePoint {
TimePoint() : pack{} {}
u128 pack{};
struct Inner {
u64 last_measure{};
u64 accumulated_ticks{};
} inner;
u64 ns_rdtsc_factor;
u64 us_rdtsc_factor;
u64 ms_rdtsc_factor;
u64 cntpct_rdtsc_factor;
};
TimePoint time_point;
// factors
u64 clock_rtsc_factor{};
u64 cpu_rtsc_factor{};
u64 ns_rtsc_factor{};
u64 us_rtsc_factor{};
u64 ms_rtsc_factor{};
u64 rtsc_frequency;
std::jthread time_sync_thread;
};
} // namespace X64
u64 EstimateRDTSCFrequency();
} // namespace Common
} // namespace Common::X64

39
src/common/x64/rdtsc.cpp Executable file
View file

@ -0,0 +1,39 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <thread>
#include "common/steady_clock.h"
#include "common/uint128.h"
#include "common/x64/rdtsc.h"
namespace Common::X64 {
template <u64 Nearest>
static u64 RoundToNearest(u64 value) {
const auto mod = value % Nearest;
return mod >= (Nearest / 2) ? (value - mod + Nearest) : (value - mod);
}
u64 EstimateRDTSCFrequency() {
// Discard the first result measuring the rdtsc.
FencedRDTSC();
std::this_thread::sleep_for(std::chrono::milliseconds{1});
FencedRDTSC();
// Get the current time.
const auto start_time = RealTimeClock::Now();
const u64 tsc_start = FencedRDTSC();
// Wait for 100 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{100});
const auto end_time = RealTimeClock::Now();
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 timer_diff = static_cast<u64>(
std::chrono::duration_cast<std::chrono::nanoseconds>(end_time - start_time).count());
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return RoundToNearest<100'000>(tsc_freq);
}
} // namespace Common::X64

37
src/common/x64/rdtsc.h Executable file
View file

@ -0,0 +1,37 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include "common/common_types.h"
namespace Common::X64 {
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
#else
static inline u64 FencedRDTSC() {
u64 eax;
u64 edx;
asm volatile("lfence\n\t"
"rdtsc\n\t"
"lfence\n\t"
: "=a"(eax), "=d"(edx));
return (edx << 32) | eax;
}
#endif
u64 EstimateRDTSCFrequency();
} // namespace Common::X64

View file

@ -16,7 +16,6 @@ add_library(core STATIC
core.h
core_timing.cpp
core_timing.h
core_timing_util.h
cpu_manager.cpp
cpu_manager.h
crypto/aes_util.cpp

View file

@ -16,7 +16,6 @@
#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
namespace Core::Timing {
@ -45,9 +44,7 @@ struct CoreTiming::Event {
}
};
CoreTiming::CoreTiming()
: cpu_clock{Common::CreateBestMatchingClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)},
event_clock{Common::CreateStandardWallClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)} {}
CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}
CoreTiming::~CoreTiming() {
Reset();
@ -180,7 +177,7 @@ void CoreTiming::AddTicks(u64 ticks_to_add) {
void CoreTiming::Idle() {
if (!event_queue.empty()) {
const u64 next_event_time = event_queue.front().time;
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
const u64 next_ticks = Common::WallClock::NSToCNTPCT(next_event_time) + 10U;
if (next_ticks > ticks) {
ticks = next_ticks;
}
@ -193,18 +190,11 @@ void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetCPUTicks() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetCPUCycles();
}
return ticks;
}
u64 CoreTiming::GetClockTicks() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetClockCycles();
return clock->GetCNTPCT();
}
return CpuCyclesToClockCycles(ticks);
return ticks;
}
std::optional<s64> CoreTiming::Advance() {
@ -297,9 +287,7 @@ void CoreTiming::ThreadLoop() {
}
paused_set = true;
event_clock->Pause(true);
pause_event.Wait();
event_clock->Pause(false);
}
}
@ -315,25 +303,18 @@ void CoreTiming::Reset() {
has_started = false;
}
std::chrono::nanoseconds CoreTiming::GetCPUTimeNs() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetTimeNS();
}
return CyclesToNs(ticks);
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) [[likely]] {
return event_clock->GetTimeNS();
return clock->GetTimeNS();
}
return CyclesToNs(ticks);
return std::chrono::nanoseconds{Common::WallClock::CNTPCTToNS(ticks)};
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) [[likely]] {
return event_clock->GetTimeUS();
return clock->GetTimeUS();
}
return CyclesToUs(ticks);
return std::chrono::microseconds{Common::WallClock::CNTPCTToUS(ticks)};
}
} // namespace Core::Timing

View file

@ -116,15 +116,9 @@ public:
return downcount;
}
/// Returns current time in emulated CPU cycles
u64 GetCPUTicks() const;
/// Returns current time in emulated in Clock cycles
/// Returns the current CNTPCT tick value.
u64 GetClockTicks() const;
/// Returns current time in nanoseconds.
std::chrono::nanoseconds GetCPUTimeNs() const;
/// Returns current time in microseconds.
std::chrono::microseconds GetGlobalTimeUs() const;
@ -142,8 +136,7 @@ private:
void Reset();
std::unique_ptr<Common::WallClock> cpu_clock;
std::unique_ptr<Common::WallClock> event_clock;
std::unique_ptr<Common::WallClock> clock;
s64 global_timer = 0;

View file

@ -184,7 +184,8 @@ u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
prev_highest_thread != highest_thread) [[likely]] {
if (prev_highest_thread != nullptr) [[likely]] {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(m_kernel.System().CoreTiming().GetCPUTicks());
prev_highest_thread->SetLastScheduledTick(
m_kernel.System().CoreTiming().GetClockTicks());
}
if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] {
@ -351,7 +352,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// Update the CPU time tracking variables.
const s64 prev_tick = m_last_context_switch_time;
const s64 cur_tick = m_kernel.System().CoreTiming().GetCPUTicks();
const s64 cur_tick = m_kernel.System().CoreTiming().GetClockTicks();
const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) {

View file

@ -199,9 +199,9 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetCpuTime();
out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks);
out_ticks = thread_ticks + (core_timing.GetClockTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.Kernel().CurrentPhysicalCoreIndex()) {
out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks;
out_ticks = core_timing.GetClockTicks() - prev_ctx_ticks;
}
*result = out_ticks;

View file

@ -5,7 +5,6 @@
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hid/hid_types.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_readable_event.h"

View file

@ -92,6 +92,14 @@ Status BufferQueueConsumer::AcquireBuffer(BufferItem* out_buffer,
LOG_DEBUG(Service_Nvnflinger, "acquiring slot={}", slot);
// If the front buffer is still being tracked, update its slot state
if (core->StillTracking(*front)) {
slots[slot].acquire_called = true;
slots[slot].needs_cleanup_on_release = false;
slots[slot].buffer_state = BufferState::Acquired;
slots[slot].fence = Fence::NoFence();
}
// If the buffer has previously been acquired by the consumer, set graphic_buffer to nullptr to
// avoid unnecessarily remapping this buffer on the consumer side.
if (out_buffer->acquire_called) {
@ -134,6 +142,8 @@ Status BufferQueueConsumer::ReleaseBuffer(s32 slot, u64 frame_number, const Fenc
++current;
}
if (slots[slot].buffer_state == BufferState::Acquired) {
slots[slot].fence = release_fence;
slots[slot].buffer_state = BufferState::Free;
nvmap.FreeHandle(slots[slot].graphic_buffer->BufferId(), true);
@ -141,6 +151,20 @@ Status BufferQueueConsumer::ReleaseBuffer(s32 slot, u64 frame_number, const Fenc
listener = core->connected_producer_listener;
LOG_DEBUG(Service_Nvnflinger, "releasing slot {}", slot);
} else if (slots[slot].needs_cleanup_on_release) {
LOG_DEBUG(Service_Nvnflinger, "releasing a stale buffer slot {} (state = {})", slot,
slots[slot].buffer_state);
slots[slot].needs_cleanup_on_release = false;
return Status::StaleBufferSlot;
} else {
LOG_ERROR(Service_Nvnflinger,
"attempted to release buffer slot {} but its state was {}", slot,
slots[slot].buffer_state);
return Status::BadValue;
}
core->SignalDequeueCondition();
}

View file

@ -86,6 +86,10 @@ void BufferQueueCore::FreeBufferLocked(s32 slot) {
slots[slot].graphic_buffer.reset();
if (slots[slot].buffer_state == BufferState::Acquired) {
slots[slot].needs_cleanup_on_release = true;
}
slots[slot].buffer_state = BufferState::Free;
slots[slot].frame_number = UINT32_MAX;
slots[slot].acquire_called = false;

View file

@ -31,6 +31,7 @@ struct BufferSlot final {
u64 frame_number{};
Fence fence;
bool acquire_called{};
bool needs_cleanup_on_release{};
bool attached_by_consumer{};
bool is_preallocated{};
};

View file

@ -46,11 +46,8 @@ void Nvnflinger::SplitVSync(std::stop_token stop_token) {
vsync_signal.wait(false);
vsync_signal.store(false);
guard->lock();
const auto lock_guard = Lock();
Compose();
guard->unlock();
}
}
@ -70,7 +67,9 @@ Nvnflinger::Nvnflinger(Core::System& system_, HosBinderDriverServer& hos_binder_
[this](std::uintptr_t, s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
vsync_signal.store(true);
vsync_signal.notify_all();
const auto lock_guard = Lock();
vsync_signal.notify_one();
return std::chrono::nanoseconds(GetNextTicks());
});
@ -267,8 +266,9 @@ void Nvnflinger::Compose() {
SCOPE_EXIT({ display.SignalVSyncEvent(); });
// Don't do anything for displays without layers.
if (!display.HasLayers())
if (!display.HasLayers()) {
continue;
}
// TODO(Subv): Support more than 1 layer.
VI::Layer& layer = display.GetLayer(0);

View file

@ -3,6 +3,8 @@
#pragma once
#include <ratio>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/uuid.h"
@ -62,18 +64,19 @@ static_assert(std::is_trivially_copyable_v<SystemClockContext>,
/// https://switchbrew.org/wiki/Glue_services#TimeSpanType
struct TimeSpanType {
s64 nanoseconds{};
static constexpr s64 ns_per_second{1000000000ULL};
s64 ToSeconds() const {
return nanoseconds / ns_per_second;
return nanoseconds / std::nano::den;
}
static TimeSpanType FromSeconds(s64 seconds) {
return {seconds * ns_per_second};
return {seconds * std::nano::den};
}
static TimeSpanType FromTicks(u64 ticks, u64 frequency) {
return FromSeconds(static_cast<s64>(ticks) / static_cast<s64>(frequency));
template <u64 Frequency>
static TimeSpanType FromTicks(u64 ticks) {
using TicksToNSRatio = std::ratio<std::nano::den, Frequency>;
return {static_cast<s64>(ticks * TicksToNSRatio::num / TicksToNSRatio::den)};
}
};
static_assert(sizeof(TimeSpanType) == 8, "TimeSpanType is incorrect size");

View file

@ -10,7 +10,7 @@ namespace Service::Time::Clock {
TimeSpanType StandardSteadyClockCore::GetCurrentRawTimePoint(Core::System& system) {
const TimeSpanType ticks_time_span{
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(system.CoreTiming().GetClockTicks())};
TimeSpanType raw_time_point{setup_value.nanoseconds + ticks_time_span.nanoseconds};
if (raw_time_point.nanoseconds < cached_raw_time_point.nanoseconds) {

View file

@ -10,7 +10,7 @@ namespace Service::Time::Clock {
SteadyClockTimePoint TickBasedSteadyClockCore::GetTimePoint(Core::System& system) {
const TimeSpanType ticks_time_span{
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(system.CoreTiming().GetClockTicks())};
return {ticks_time_span.ToSeconds(), GetClockSourceId()};
}

View file

@ -240,8 +240,8 @@ void Module::Interface::CalculateMonotonicSystemClockBaseTimePoint(HLERequestCon
const auto current_time_point{steady_clock_core.GetCurrentTimePoint(system)};
if (current_time_point.clock_source_id == context.steady_time_point.clock_source_id) {
const auto ticks{Clock::TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(),
Core::Hardware::CNTFREQ)};
const auto ticks{Clock::TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(
system.CoreTiming().GetClockTicks())};
const s64 base_time_point{context.offset + current_time_point.time_point -
ticks.ToSeconds()};
IPC::ResponseBuilder rb{ctx, (sizeof(s64) / 4) + 2};

View file

@ -21,8 +21,9 @@ SharedMemory::~SharedMemory() = default;
void SharedMemory::SetupStandardSteadyClock(const Common::UUID& clock_source_id,
Clock::TimeSpanType current_time_point) {
const Clock::TimeSpanType ticks_time_span{Clock::TimeSpanType::FromTicks(
system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
const Clock::TimeSpanType ticks_time_span{
Clock::TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(
system.CoreTiming().GetClockTicks())};
const Clock::SteadyClockContext context{
static_cast<u64>(current_time_point.nanoseconds - ticks_time_span.nanoseconds),
clock_source_id};

View file

@ -15,7 +15,7 @@ add_executable(tests
core/core_timing.cpp
core/internal_network/network.cpp
precompiled_headers.h
video_core/buffer_base.cpp
video_core/memory_tracker.cpp
input_common/calibration_configuration_job.cpp
)

View file

@ -0,0 +1,547 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include <memory>
#include <stdexcept>
#include <unordered_map>
#include <catch2/catch_test_macros.hpp>
#include "common/alignment.h"
#include "common/common_types.h"
#include "video_core/buffer_cache/memory_tracker_base.h"
namespace {
using Range = std::pair<u64, u64>;
constexpr u64 PAGE = 4096;
constexpr u64 WORD = 4096 * 64;
constexpr u64 HIGH_PAGE_BITS = 22;
constexpr u64 HIGH_PAGE_SIZE = 1ULL << HIGH_PAGE_BITS;
constexpr VAddr c = 16 * HIGH_PAGE_SIZE;
class RasterizerInterface {
public:
void UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
const u64 page_start{addr >> Core::Memory::YUZU_PAGEBITS};
const u64 page_end{(addr + size + Core::Memory::YUZU_PAGESIZE - 1) >>
Core::Memory::YUZU_PAGEBITS};
for (u64 page = page_start; page < page_end; ++page) {
int& value = page_table[page];
value += delta;
if (value < 0) {
throw std::logic_error{"negative page"};
}
if (value == 0) {
page_table.erase(page);
}
}
}
[[nodiscard]] int Count(VAddr addr) const noexcept {
const auto it = page_table.find(addr >> Core::Memory::YUZU_PAGEBITS);
return it == page_table.end() ? 0 : it->second;
}
[[nodiscard]] unsigned Count() const noexcept {
unsigned count = 0;
for (const auto& [index, value] : page_table) {
count += value;
}
return count;
}
private:
std::unordered_map<u64, int> page_table;
};
} // Anonymous namespace
using MemoryTracker = VideoCommon::MemoryTrackerBase<RasterizerInterface>;
TEST_CASE("MemoryTracker: Small region", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE(rasterizer.Count() == 0);
memory_track->UnmarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == WORD / PAGE);
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD) == Range{0, 0});
memory_track->MarkRegionAsCpuModified(c + PAGE, 1);
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD) == Range{c + PAGE * 1, c + PAGE * 2});
}
TEST_CASE("MemoryTracker: Large region", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 32);
memory_track->MarkRegionAsCpuModified(c + 4096, WORD * 4);
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD + PAGE * 2) ==
Range{c + PAGE, c + WORD + PAGE * 2});
REQUIRE(memory_track->ModifiedCpuRegion(c + PAGE * 2, PAGE * 6) ==
Range{c + PAGE * 2, c + PAGE * 8});
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD * 32) == Range{c + PAGE, c + WORD * 4 + PAGE});
REQUIRE(memory_track->ModifiedCpuRegion(c + WORD * 4, PAGE) ==
Range{c + WORD * 4, c + WORD * 4 + PAGE});
REQUIRE(memory_track->ModifiedCpuRegion(c + WORD * 3 + PAGE * 63, PAGE) ==
Range{c + WORD * 3 + PAGE * 63, c + WORD * 4});
memory_track->MarkRegionAsCpuModified(c + WORD * 5 + PAGE * 6, PAGE);
memory_track->MarkRegionAsCpuModified(c + WORD * 5 + PAGE * 8, PAGE);
REQUIRE(memory_track->ModifiedCpuRegion(c + WORD * 5, WORD) ==
Range{c + WORD * 5 + PAGE * 6, c + WORD * 5 + PAGE * 9});
memory_track->UnmarkRegionAsCpuModified(c + WORD * 5 + PAGE * 8, PAGE);
REQUIRE(memory_track->ModifiedCpuRegion(c + WORD * 5, WORD) ==
Range{c + WORD * 5 + PAGE * 6, c + WORD * 5 + PAGE * 7});
memory_track->MarkRegionAsCpuModified(c + PAGE, WORD * 31 + PAGE * 63);
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD * 32) == Range{c + PAGE, c + WORD * 32});
memory_track->UnmarkRegionAsCpuModified(c + PAGE * 4, PAGE);
memory_track->UnmarkRegionAsCpuModified(c + PAGE * 6, PAGE);
memory_track->UnmarkRegionAsCpuModified(c, WORD * 32);
REQUIRE(memory_track->ModifiedCpuRegion(c, WORD * 32) == Range{0, 0});
}
TEST_CASE("MemoryTracker: Rasterizer counting", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE(rasterizer.Count() == 0);
memory_track->UnmarkRegionAsCpuModified(c, PAGE);
REQUIRE(rasterizer.Count() == 1);
memory_track->MarkRegionAsCpuModified(c, PAGE * 2);
REQUIRE(rasterizer.Count() == 0);
memory_track->UnmarkRegionAsCpuModified(c, PAGE);
memory_track->UnmarkRegionAsCpuModified(c + PAGE, PAGE);
REQUIRE(rasterizer.Count() == 2);
memory_track->MarkRegionAsCpuModified(c, PAGE * 2);
REQUIRE(rasterizer.Count() == 0);
}
TEST_CASE("MemoryTracker: Basic range", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->MarkRegionAsCpuModified(c, PAGE);
int num = 0;
memory_track->ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c);
REQUIRE(size == PAGE);
++num;
});
REQUIRE(num == 1U);
}
TEST_CASE("MemoryTracker: Border upload", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 2);
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c, WORD * 2, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE * 2);
});
}
TEST_CASE("MemoryTracker: Border upload range", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 2);
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c + WORD - PAGE, PAGE * 2, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE * 2);
});
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c + WORD - PAGE, PAGE, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE);
});
memory_track->ForEachUploadRange(c + WORD, PAGE, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD);
REQUIRE(size == PAGE);
});
}
TEST_CASE("MemoryTracker: Border upload partial range", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 2);
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c + WORD - 1, 2, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE * 2);
});
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c + WORD - 1, 1, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE);
});
memory_track->ForEachUploadRange(c + WORD + 50, 1, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD);
REQUIRE(size == PAGE);
});
}
TEST_CASE("MemoryTracker: Partial word uploads", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
int num = 0;
memory_track->ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c);
REQUIRE(size == WORD);
++num;
});
REQUIRE(num == 1);
memory_track->ForEachUploadRange(c + WORD, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c + WORD);
REQUIRE(size == WORD);
++num;
});
REQUIRE(num == 2);
memory_track->ForEachUploadRange(c + 0x79000, 0x24000, [&](u64 offset, u64 size) {
REQUIRE(offset == c + WORD * 2);
REQUIRE(size == PAGE * 0x1d);
++num;
});
REQUIRE(num == 3);
}
TEST_CASE("MemoryTracker: Partial page upload", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
int num = 0;
memory_track->MarkRegionAsCpuModified(c + PAGE * 2, PAGE);
memory_track->MarkRegionAsCpuModified(c + PAGE * 9, PAGE);
memory_track->ForEachUploadRange(c, PAGE * 3, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 2);
REQUIRE(size == PAGE);
++num;
});
REQUIRE(num == 1);
memory_track->ForEachUploadRange(c + PAGE * 7, PAGE * 3, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 9);
REQUIRE(size == PAGE);
++num;
});
REQUIRE(num == 2);
}
TEST_CASE("MemoryTracker: Partial page upload with multiple words on the right") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 9);
memory_track->MarkRegionAsCpuModified(c + PAGE * 13, WORD * 7);
int num = 0;
memory_track->ForEachUploadRange(c + PAGE * 10, WORD * 7, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 13);
REQUIRE(size == WORD * 7 - PAGE * 3);
++num;
});
REQUIRE(num == 1);
memory_track->ForEachUploadRange(c + PAGE, WORD * 8, [&](u64 offset, u64 size) {
REQUIRE(offset == c + WORD * 7 + PAGE * 10);
REQUIRE(size == PAGE * 3);
++num;
});
REQUIRE(num == 2);
}
TEST_CASE("MemoryTracker: Partial page upload with multiple words on the left", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 8);
memory_track->MarkRegionAsCpuModified(c + PAGE * 13, WORD * 7);
int num = 0;
memory_track->ForEachUploadRange(c + PAGE * 16, WORD * 7, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 16);
REQUIRE(size == WORD * 7 - PAGE * 3);
++num;
});
REQUIRE(num == 1);
memory_track->ForEachUploadRange(c + PAGE, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 13);
REQUIRE(size == PAGE * 3);
++num;
});
REQUIRE(num == 2);
}
TEST_CASE("MemoryTracker: Partial page upload with multiple words in the middle", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 8);
memory_track->MarkRegionAsCpuModified(c + PAGE * 13, PAGE * 140);
int num = 0;
memory_track->ForEachUploadRange(c + PAGE * 16, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 16);
REQUIRE(size == WORD);
++num;
});
REQUIRE(num == 1);
memory_track->ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) {
REQUIRE(offset == c + PAGE * 13);
REQUIRE(size == PAGE * 3);
++num;
});
REQUIRE(num == 2);
memory_track->ForEachUploadRange(c, WORD * 8, [&](u64 offset, u64 size) {
REQUIRE(offset == c + WORD + PAGE * 16);
REQUIRE(size == PAGE * 73);
++num;
});
REQUIRE(num == 3);
}
TEST_CASE("MemoryTracker: Empty right bits", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 2048);
memory_track->MarkRegionAsCpuModified(c + WORD - PAGE, PAGE * 2);
memory_track->ForEachUploadRange(c, WORD * 2048, [](u64 offset, u64 size) {
REQUIRE(offset == c + WORD - PAGE);
REQUIRE(size == PAGE * 2);
});
}
TEST_CASE("MemoryTracker: Out of bound ranges 1", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c - WORD, 3 * WORD);
memory_track->MarkRegionAsCpuModified(c, PAGE);
REQUIRE(rasterizer.Count() == (3 * WORD - PAGE) / PAGE);
int num = 0;
memory_track->ForEachUploadRange(c - WORD, WORD, [&](u64 offset, u64 size) { ++num; });
memory_track->ForEachUploadRange(c + WORD, WORD, [&](u64 offset, u64 size) { ++num; });
memory_track->ForEachUploadRange(c - PAGE, PAGE, [&](u64 offset, u64 size) { ++num; });
REQUIRE(num == 0);
memory_track->ForEachUploadRange(c - PAGE, PAGE * 2, [&](u64 offset, u64 size) { ++num; });
REQUIRE(num == 1);
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 2 * WORD / PAGE);
}
TEST_CASE("MemoryTracker: Out of bound ranges 2", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE_NOTHROW(memory_track->UnmarkRegionAsCpuModified(c + 0x22000, PAGE));
REQUIRE_NOTHROW(memory_track->UnmarkRegionAsCpuModified(c + 0x28000, PAGE));
REQUIRE(rasterizer.Count() == 2);
REQUIRE_NOTHROW(memory_track->UnmarkRegionAsCpuModified(c + 0x21100, PAGE - 0x100));
REQUIRE(rasterizer.Count() == 3);
REQUIRE_NOTHROW(memory_track->UnmarkRegionAsCpuModified(c - PAGE, PAGE * 2));
memory_track->UnmarkRegionAsCpuModified(c - PAGE * 3, PAGE * 2);
memory_track->UnmarkRegionAsCpuModified(c - PAGE * 2, PAGE * 2);
REQUIRE(rasterizer.Count() == 7);
}
TEST_CASE("MemoryTracker: Out of bound ranges 3", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, 0x310720);
REQUIRE(rasterizer.Count(c) == 1);
REQUIRE(rasterizer.Count(c + PAGE) == 1);
REQUIRE(rasterizer.Count(c + WORD) == 1);
REQUIRE(rasterizer.Count(c + WORD + PAGE) == 1);
}
TEST_CASE("MemoryTracker: Sparse regions 1", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->MarkRegionAsCpuModified(c + PAGE * 1, PAGE);
memory_track->MarkRegionAsCpuModified(c + PAGE * 3, PAGE * 4);
memory_track->ForEachUploadRange(c, WORD, [i = 0](u64 offset, u64 size) mutable {
static constexpr std::array<u64, 2> offsets{c + PAGE, c + PAGE * 3};
static constexpr std::array<u64, 2> sizes{PAGE, PAGE * 4};
REQUIRE(offset == offsets.at(i));
REQUIRE(size == sizes.at(i));
++i;
});
}
TEST_CASE("MemoryTracker: Sparse regions 2", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, PAGE * 0x23);
REQUIRE(rasterizer.Count() == 0x23);
memory_track->MarkRegionAsCpuModified(c + PAGE * 0x1B, PAGE);
memory_track->MarkRegionAsCpuModified(c + PAGE * 0x21, PAGE);
memory_track->ForEachUploadRange(c, PAGE * 0x23, [i = 0](u64 offset, u64 size) mutable {
static constexpr std::array<u64, 3> offsets{c + PAGE * 0x1B, c + PAGE * 0x21};
static constexpr std::array<u64, 3> sizes{PAGE, PAGE};
REQUIRE(offset == offsets.at(i));
REQUIRE(size == sizes.at(i));
++i;
});
}
TEST_CASE("MemoryTracker: Single page modified range", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE(memory_track->IsRegionCpuModified(c, PAGE));
memory_track->UnmarkRegionAsCpuModified(c, PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(c, PAGE));
}
TEST_CASE("MemoryTracker: Two page modified range", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE(memory_track->IsRegionCpuModified(c, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c, PAGE * 2));
memory_track->UnmarkRegionAsCpuModified(c, PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(c, PAGE));
}
TEST_CASE("MemoryTracker: Multi word modified ranges", "[video_core]") {
for (int offset = 0; offset < 4; ++offset) {
const VAddr address = c + WORD * offset;
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
REQUIRE(memory_track->IsRegionCpuModified(address, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 48, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 56, PAGE));
memory_track->UnmarkRegionAsCpuModified(address + PAGE * 32, PAGE);
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE, WORD));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 31, PAGE));
REQUIRE(!memory_track->IsRegionCpuModified(address + PAGE * 32, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 33, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 31, PAGE * 2));
REQUIRE(memory_track->IsRegionCpuModified(address + PAGE * 32, PAGE * 2));
memory_track->UnmarkRegionAsCpuModified(address + PAGE * 33, PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(address + PAGE * 32, PAGE * 2));
}
}
TEST_CASE("MemoryTracker: Single page in large region", "[video_core]") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 16);
REQUIRE(!memory_track->IsRegionCpuModified(c, WORD * 16));
memory_track->MarkRegionAsCpuModified(c + WORD * 12 + PAGE * 8, PAGE);
REQUIRE(memory_track->IsRegionCpuModified(c, WORD * 16));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 10, WORD * 2));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 11, WORD * 2));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 12, WORD * 2));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 12 + PAGE * 4, PAGE * 8));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 12 + PAGE * 6, PAGE * 8));
REQUIRE(!memory_track->IsRegionCpuModified(c + WORD * 12 + PAGE * 6, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 12 + PAGE * 7, PAGE * 2));
REQUIRE(memory_track->IsRegionCpuModified(c + WORD * 12 + PAGE * 8, PAGE * 2));
}
TEST_CASE("MemoryTracker: Wrap word regions") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD * 32);
memory_track->MarkRegionAsCpuModified(c + PAGE * 63, PAGE * 2);
REQUIRE(memory_track->IsRegionCpuModified(c, WORD * 2));
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE * 62, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 63, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 64, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 63, PAGE * 2));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 63, PAGE * 8));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 60, PAGE * 8));
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE * 127, WORD * 16));
memory_track->MarkRegionAsCpuModified(c + PAGE * 127, PAGE);
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 127, WORD * 16));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 127, PAGE));
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE * 126, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 126, PAGE * 2));
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE * 128, WORD * 16));
}
TEST_CASE("MemoryTracker: Unaligned page region query") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->MarkRegionAsCpuModified(c + 4000, 1000);
REQUIRE(memory_track->IsRegionCpuModified(c, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + 4000, 1000));
REQUIRE(memory_track->IsRegionCpuModified(c + 4000, 1));
}
TEST_CASE("MemoryTracker: Cached write") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->CachedCpuWrite(c + PAGE, c + PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->FlushCachedWrites();
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 0);
}
TEST_CASE("MemoryTracker: Multiple cached write") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->CachedCpuWrite(c + PAGE, PAGE);
memory_track->CachedCpuWrite(c + PAGE * 3, PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE * 3, PAGE));
memory_track->FlushCachedWrites();
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE * 3, PAGE));
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 0);
}
TEST_CASE("MemoryTracker: Cached write unmarked") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->CachedCpuWrite(c + PAGE, PAGE);
memory_track->UnmarkRegionAsCpuModified(c + PAGE, PAGE);
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->FlushCachedWrites();
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 0);
}
TEST_CASE("MemoryTracker: Cached write iterated") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
memory_track->CachedCpuWrite(c + PAGE, PAGE);
int num = 0;
memory_track->ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) { ++num; });
REQUIRE(num == 0);
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->FlushCachedWrites();
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 0);
}
TEST_CASE("MemoryTracker: Cached write downloads") {
RasterizerInterface rasterizer;
std::unique_ptr<MemoryTracker> memory_track(std::make_unique<MemoryTracker>(rasterizer));
memory_track->UnmarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 64);
memory_track->CachedCpuWrite(c + PAGE, PAGE);
REQUIRE(rasterizer.Count() == 63);
memory_track->MarkRegionAsGpuModified(c + PAGE, PAGE);
int num = 0;
memory_track->ForEachDownloadRangeAndClear(c, WORD, [&](u64 offset, u64 size) { ++num; });
memory_track->ForEachUploadRange(c, WORD, [&](u64 offset, u64 size) { ++num; });
REQUIRE(num == 0);
REQUIRE(!memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(!memory_track->IsRegionGpuModified(c + PAGE, PAGE));
memory_track->FlushCachedWrites();
REQUIRE(memory_track->IsRegionCpuModified(c + PAGE, PAGE));
REQUIRE(!memory_track->IsRegionGpuModified(c + PAGE, PAGE));
memory_track->MarkRegionAsCpuModified(c, WORD);
REQUIRE(rasterizer.Count() == 0);
}

View file

@ -11,8 +11,11 @@ endif()
add_library(video_core STATIC
buffer_cache/buffer_base.h
buffer_cache/buffer_cache_base.h
buffer_cache/buffer_cache.cpp
buffer_cache/buffer_cache.h
buffer_cache/memory_tracker_base.h
buffer_cache/word_manager.h
cache_types.h
cdma_pusher.cpp
cdma_pusher.h
@ -104,6 +107,7 @@ add_library(video_core STATIC
renderer_null/renderer_null.h
renderer_opengl/blit_image.cpp
renderer_opengl/blit_image.h
renderer_opengl/gl_buffer_cache_base.cpp
renderer_opengl/gl_buffer_cache.cpp
renderer_opengl/gl_buffer_cache.h
renderer_opengl/gl_compute_pipeline.cpp
@ -154,6 +158,7 @@ add_library(video_core STATIC
renderer_vulkan/renderer_vulkan.cpp
renderer_vulkan/vk_blit_screen.cpp
renderer_vulkan/vk_blit_screen.h
renderer_vulkan/vk_buffer_cache_base.cpp
renderer_vulkan/vk_buffer_cache.cpp
renderer_vulkan/vk_buffer_cache.h
renderer_vulkan/vk_command_pool.cpp

View file

@ -1,5 +1,5 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
@ -11,9 +11,7 @@
#include "common/alignment.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/buffer_cache/word_manager.h"
namespace VideoCommon {
@ -36,116 +34,14 @@ struct NullBufferParams {};
*/
template <class RasterizerInterface>
class BufferBase {
static constexpr u64 PAGES_PER_WORD = 64;
static constexpr u64 BYTES_PER_PAGE = Core::Memory::YUZU_PAGESIZE;
static constexpr u64 BYTES_PER_WORD = PAGES_PER_WORD * BYTES_PER_PAGE;
/// Vector tracking modified pages tightly packed with small vector optimization
union WordsArray {
/// Returns the pointer to the words state
[[nodiscard]] const u64* Pointer(bool is_short) const noexcept {
return is_short ? &stack : heap;
}
/// Returns the pointer to the words state
[[nodiscard]] u64* Pointer(bool is_short) noexcept {
return is_short ? &stack : heap;
}
u64 stack = 0; ///< Small buffers storage
u64* heap; ///< Not-small buffers pointer to the storage
};
struct Words {
explicit Words() = default;
explicit Words(u64 size_bytes_) : size_bytes{size_bytes_} {
if (IsShort()) {
cpu.stack = ~u64{0};
gpu.stack = 0;
cached_cpu.stack = 0;
untracked.stack = ~u64{0};
} else {
// Share allocation between CPU and GPU pages and set their default values
const size_t num_words = NumWords();
u64* const alloc = new u64[num_words * 4];
cpu.heap = alloc;
gpu.heap = alloc + num_words;
cached_cpu.heap = alloc + num_words * 2;
untracked.heap = alloc + num_words * 3;
std::fill_n(cpu.heap, num_words, ~u64{0});
std::fill_n(gpu.heap, num_words, 0);
std::fill_n(cached_cpu.heap, num_words, 0);
std::fill_n(untracked.heap, num_words, ~u64{0});
}
// Clean up tailing bits
const u64 last_word_size = size_bytes % BYTES_PER_WORD;
const u64 last_local_page = Common::DivCeil(last_word_size, BYTES_PER_PAGE);
const u64 shift = (PAGES_PER_WORD - last_local_page) % PAGES_PER_WORD;
const u64 last_word = (~u64{0} << shift) >> shift;
cpu.Pointer(IsShort())[NumWords() - 1] = last_word;
untracked.Pointer(IsShort())[NumWords() - 1] = last_word;
}
~Words() {
Release();
}
Words& operator=(Words&& rhs) noexcept {
Release();
size_bytes = rhs.size_bytes;
cpu = rhs.cpu;
gpu = rhs.gpu;
cached_cpu = rhs.cached_cpu;
untracked = rhs.untracked;
rhs.cpu.heap = nullptr;
return *this;
}
Words(Words&& rhs) noexcept
: size_bytes{rhs.size_bytes}, cpu{rhs.cpu}, gpu{rhs.gpu},
cached_cpu{rhs.cached_cpu}, untracked{rhs.untracked} {
rhs.cpu.heap = nullptr;
}
Words& operator=(const Words&) = delete;
Words(const Words&) = delete;
/// Returns true when the buffer fits in the small vector optimization
[[nodiscard]] bool IsShort() const noexcept {
return size_bytes <= BYTES_PER_WORD;
}
/// Returns the number of words of the buffer
[[nodiscard]] size_t NumWords() const noexcept {
return Common::DivCeil(size_bytes, BYTES_PER_WORD);
}
/// Release buffer resources
void Release() {
if (!IsShort()) {
// CPU written words is the base for the heap allocation
delete[] cpu.heap;
}
}
u64 size_bytes = 0;
WordsArray cpu;
WordsArray gpu;
WordsArray cached_cpu;
WordsArray untracked;
};
enum class Type {
CPU,
GPU,
CachedCPU,
Untracked,
};
public:
static constexpr u64 BASE_PAGE_BITS = 16;
static constexpr u64 BASE_PAGE_SIZE = 1ULL << BASE_PAGE_BITS;
explicit BufferBase(RasterizerInterface& rasterizer_, VAddr cpu_addr_, u64 size_bytes)
: rasterizer{&rasterizer_}, cpu_addr{Common::AlignDown(cpu_addr_, BYTES_PER_PAGE)},
words(Common::AlignUp(size_bytes + (cpu_addr_ - cpu_addr), BYTES_PER_PAGE)) {}
: cpu_addr{Common::AlignDown(cpu_addr_, BASE_PAGE_SIZE)},
word_manager(cpu_addr, rasterizer_,
Common::AlignUp(size_bytes + (cpu_addr_ - cpu_addr), BASE_PAGE_SIZE)) {}
explicit BufferBase(NullBufferParams) {}
@ -159,94 +55,82 @@ public:
[[nodiscard]] std::pair<u64, u64> ModifiedCpuRegion(VAddr query_cpu_addr,
u64 query_size) const noexcept {
const u64 offset = query_cpu_addr - cpu_addr;
return ModifiedRegion<Type::CPU>(offset, query_size);
return word_manager.template ModifiedRegion<Type::CPU>(offset, query_size);
}
/// Returns the inclusive GPU modified range in a begin end pair
[[nodiscard]] std::pair<u64, u64> ModifiedGpuRegion(VAddr query_cpu_addr,
u64 query_size) const noexcept {
const u64 offset = query_cpu_addr - cpu_addr;
return ModifiedRegion<Type::GPU>(offset, query_size);
return word_manager.template ModifiedRegion<Type::GPU>(offset, query_size);
}
/// Returns true if a region has been modified from the CPU
[[nodiscard]] bool IsRegionCpuModified(VAddr query_cpu_addr, u64 query_size) const noexcept {
const u64 offset = query_cpu_addr - cpu_addr;
return IsRegionModified<Type::CPU>(offset, query_size);
return word_manager.template IsRegionModified<Type::CPU>(offset, query_size);
}
/// Returns true if a region has been modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr query_cpu_addr, u64 query_size) const noexcept {
const u64 offset = query_cpu_addr - cpu_addr;
return IsRegionModified<Type::GPU>(offset, query_size);
return word_manager.template IsRegionModified<Type::GPU>(offset, query_size);
}
/// Mark region as CPU modified, notifying the rasterizer about this change
void MarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 size) {
ChangeRegionState<Type::CPU, true>(dirty_cpu_addr, size);
word_manager.template ChangeRegionState<Type::CPU, true>(dirty_cpu_addr, size);
}
/// Unmark region as CPU modified, notifying the rasterizer about this change
void UnmarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 size) {
ChangeRegionState<Type::CPU, false>(dirty_cpu_addr, size);
word_manager.template ChangeRegionState<Type::CPU, false>(dirty_cpu_addr, size);
}
/// Mark region as modified from the host GPU
void MarkRegionAsGpuModified(VAddr dirty_cpu_addr, u64 size) noexcept {
ChangeRegionState<Type::GPU, true>(dirty_cpu_addr, size);
word_manager.template ChangeRegionState<Type::GPU, true>(dirty_cpu_addr, size);
}
/// Unmark region as modified from the host GPU
void UnmarkRegionAsGpuModified(VAddr dirty_cpu_addr, u64 size) noexcept {
ChangeRegionState<Type::GPU, false>(dirty_cpu_addr, size);
word_manager.template ChangeRegionState<Type::GPU, false>(dirty_cpu_addr, size);
}
/// Mark region as modified from the CPU
/// but don't mark it as modified until FlusHCachedWrites is called.
void CachedCpuWrite(VAddr dirty_cpu_addr, u64 size) {
flags |= BufferFlagBits::CachedWrites;
ChangeRegionState<Type::CachedCPU, true>(dirty_cpu_addr, size);
word_manager.template ChangeRegionState<Type::CachedCPU, true>(dirty_cpu_addr, size);
}
/// Flushes cached CPU writes, and notify the rasterizer about the deltas
void FlushCachedWrites() noexcept {
flags &= ~BufferFlagBits::CachedWrites;
const u64 num_words = NumWords();
u64* const cached_words = Array<Type::CachedCPU>();
u64* const untracked_words = Array<Type::Untracked>();
u64* const cpu_words = Array<Type::CPU>();
for (u64 word_index = 0; word_index < num_words; ++word_index) {
const u64 cached_bits = cached_words[word_index];
NotifyRasterizer<false>(word_index, untracked_words[word_index], cached_bits);
untracked_words[word_index] |= cached_bits;
cpu_words[word_index] |= cached_bits;
if (!Settings::values.use_pessimistic_flushes) {
cached_words[word_index] = 0;
}
}
word_manager.FlushCachedWrites();
}
/// Call 'func' for each CPU modified range and unmark those pages as CPU modified
template <typename Func>
void ForEachUploadRange(VAddr query_cpu_range, u64 size, Func&& func) {
ForEachModifiedRange<Type::CPU>(query_cpu_range, size, true, func);
word_manager.template ForEachModifiedRange<Type::CPU>(query_cpu_range, size, true, func);
}
/// Call 'func' for each GPU modified range and unmark those pages as GPU modified
template <typename Func>
void ForEachDownloadRange(VAddr query_cpu_range, u64 size, bool clear, Func&& func) {
ForEachModifiedRange<Type::GPU>(query_cpu_range, size, clear, func);
word_manager.template ForEachModifiedRange<Type::GPU>(query_cpu_range, size, clear, func);
}
template <typename Func>
void ForEachDownloadRangeAndClear(VAddr query_cpu_range, u64 size, Func&& func) {
ForEachModifiedRange<Type::GPU>(query_cpu_range, size, true, func);
word_manager.template ForEachModifiedRange<Type::GPU>(query_cpu_range, size, true, func);
}
/// Call 'func' for each GPU modified range and unmark those pages as GPU modified
template <typename Func>
void ForEachDownloadRange(Func&& func) {
ForEachModifiedRange<Type::GPU>(cpu_addr, SizeBytes(), true, func);
word_manager.template ForEachModifiedRange<Type::GPU>(cpu_addr, SizeBytes(), true, func);
}
/// Mark buffer as picked
@ -297,7 +181,7 @@ public:
/// Returns the size in bytes of the buffer
[[nodiscard]] u64 SizeBytes() const noexcept {
return words.size_bytes;
return word_manager.SizeBytes();
}
size_t getLRUID() const noexcept {
@ -309,301 +193,8 @@ public:
}
private:
template <Type type>
u64* Array() noexcept {
if constexpr (type == Type::CPU) {
return words.cpu.Pointer(IsShort());
} else if constexpr (type == Type::GPU) {
return words.gpu.Pointer(IsShort());
} else if constexpr (type == Type::CachedCPU) {
return words.cached_cpu.Pointer(IsShort());
} else if constexpr (type == Type::Untracked) {
return words.untracked.Pointer(IsShort());
}
}
template <Type type>
const u64* Array() const noexcept {
if constexpr (type == Type::CPU) {
return words.cpu.Pointer(IsShort());
} else if constexpr (type == Type::GPU) {
return words.gpu.Pointer(IsShort());
} else if constexpr (type == Type::CachedCPU) {
return words.cached_cpu.Pointer(IsShort());
} else if constexpr (type == Type::Untracked) {
return words.untracked.Pointer(IsShort());
}
}
/**
* Change the state of a range of pages
*
* @param dirty_addr Base address to mark or unmark as modified
* @param size Size in bytes to mark or unmark as modified
*/
template <Type type, bool enable>
void ChangeRegionState(u64 dirty_addr, s64 size) noexcept(type == Type::GPU) {
const s64 difference = dirty_addr - cpu_addr;
const u64 offset = std::max<s64>(difference, 0);
size += std::min<s64>(difference, 0);
if (offset >= SizeBytes() || size < 0) {
return;
}
u64* const untracked_words = Array<Type::Untracked>();
u64* const state_words = Array<type>();
const u64 offset_end = std::min(offset + size, SizeBytes());
const u64 begin_page_index = offset / BYTES_PER_PAGE;
const u64 begin_word_index = begin_page_index / PAGES_PER_WORD;
const u64 end_page_index = Common::DivCeil(offset_end, BYTES_PER_PAGE);
const u64 end_word_index = Common::DivCeil(end_page_index, PAGES_PER_WORD);
u64 page_index = begin_page_index % PAGES_PER_WORD;
u64 word_index = begin_word_index;
while (word_index < end_word_index) {
const u64 next_word_first_page = (word_index + 1) * PAGES_PER_WORD;
const u64 left_offset =
std::min(next_word_first_page - end_page_index, PAGES_PER_WORD) % PAGES_PER_WORD;
const u64 right_offset = page_index;
u64 bits = ~u64{0};
bits = (bits >> right_offset) << right_offset;
bits = (bits << left_offset) >> left_offset;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
NotifyRasterizer<!enable>(word_index, untracked_words[word_index], bits);
}
if constexpr (enable) {
state_words[word_index] |= bits;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
untracked_words[word_index] |= bits;
}
} else {
state_words[word_index] &= ~bits;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
untracked_words[word_index] &= ~bits;
}
}
page_index = 0;
++word_index;
}
}
/**
* Notify rasterizer about changes in the CPU tracking state of a word in the buffer
*
* @param word_index Index to the word to notify to the rasterizer
* @param current_bits Current state of the word
* @param new_bits New state of the word
*
* @tparam add_to_rasterizer True when the rasterizer should start tracking the new pages
*/
template <bool add_to_rasterizer>
void NotifyRasterizer(u64 word_index, u64 current_bits, u64 new_bits) const {
u64 changed_bits = (add_to_rasterizer ? current_bits : ~current_bits) & new_bits;
VAddr addr = cpu_addr + word_index * BYTES_PER_WORD;
while (changed_bits != 0) {
const int empty_bits = std::countr_zero(changed_bits);
addr += empty_bits * BYTES_PER_PAGE;
changed_bits >>= empty_bits;
const u32 continuous_bits = std::countr_one(changed_bits);
const u64 size = continuous_bits * BYTES_PER_PAGE;
const VAddr begin_addr = addr;
addr += size;
changed_bits = continuous_bits < PAGES_PER_WORD ? (changed_bits >> continuous_bits) : 0;
rasterizer->UpdatePagesCachedCount(begin_addr, size, add_to_rasterizer ? 1 : -1);
}
}
/**
* Loop over each page in the given range, turn off those bits and notify the rasterizer if
* needed. Call the given function on each turned off range.
*
* @param query_cpu_range Base CPU address to loop over
* @param size Size in bytes of the CPU range to loop over
* @param func Function to call for each turned off region
*/
template <Type type, typename Func>
void ForEachModifiedRange(VAddr query_cpu_range, s64 size, bool clear, Func&& func) {
static_assert(type != Type::Untracked);
const s64 difference = query_cpu_range - cpu_addr;
const u64 query_begin = std::max<s64>(difference, 0);
size += std::min<s64>(difference, 0);
if (query_begin >= SizeBytes() || size < 0) {
return;
}
u64* const untracked_words = Array<Type::Untracked>();
u64* const state_words = Array<type>();
const u64 query_end = query_begin + std::min(static_cast<u64>(size), SizeBytes());
u64* const words_begin = state_words + query_begin / BYTES_PER_WORD;
u64* const words_end = state_words + Common::DivCeil(query_end, BYTES_PER_WORD);
const auto modified = [](u64 word) { return word != 0; };
const auto first_modified_word = std::find_if(words_begin, words_end, modified);
if (first_modified_word == words_end) {
// Exit early when the buffer is not modified
return;
}
const auto last_modified_word = std::find_if_not(first_modified_word, words_end, modified);
const u64 word_index_begin = std::distance(state_words, first_modified_word);
const u64 word_index_end = std::distance(state_words, last_modified_word);
const unsigned local_page_begin = std::countr_zero(*first_modified_word);
const unsigned local_page_end =
static_cast<unsigned>(PAGES_PER_WORD) - std::countl_zero(last_modified_word[-1]);
const u64 word_page_begin = word_index_begin * PAGES_PER_WORD;
const u64 word_page_end = (word_index_end - 1) * PAGES_PER_WORD;
const u64 query_page_begin = query_begin / BYTES_PER_PAGE;
const u64 query_page_end = Common::DivCeil(query_end, BYTES_PER_PAGE);
const u64 page_index_begin = std::max(word_page_begin + local_page_begin, query_page_begin);
const u64 page_index_end = std::min(word_page_end + local_page_end, query_page_end);
const u64 first_word_page_begin = page_index_begin % PAGES_PER_WORD;
const u64 last_word_page_end = (page_index_end - 1) % PAGES_PER_WORD + 1;
u64 page_begin = first_word_page_begin;
u64 current_base = 0;
u64 current_size = 0;
bool on_going = false;
for (u64 word_index = word_index_begin; word_index < word_index_end; ++word_index) {
const bool is_last_word = word_index + 1 == word_index_end;
const u64 page_end = is_last_word ? last_word_page_end : PAGES_PER_WORD;
const u64 right_offset = page_begin;
const u64 left_offset = PAGES_PER_WORD - page_end;
u64 bits = ~u64{0};
bits = (bits >> right_offset) << right_offset;
bits = (bits << left_offset) >> left_offset;
const u64 current_word = state_words[word_index] & bits;
if (clear) {
state_words[word_index] &= ~bits;
}
if constexpr (type == Type::CPU) {
const u64 current_bits = untracked_words[word_index] & bits;
untracked_words[word_index] &= ~bits;
NotifyRasterizer<true>(word_index, current_bits, ~u64{0});
}
// Exclude CPU modified pages when visiting GPU pages
const u64 word = current_word & ~(type == Type::GPU ? untracked_words[word_index] : 0);
u64 page = page_begin;
page_begin = 0;
while (page < page_end) {
const int empty_bits = std::countr_zero(word >> page);
if (on_going && empty_bits != 0) {
InvokeModifiedRange(func, current_size, current_base);
current_size = 0;
on_going = false;
}
if (empty_bits == PAGES_PER_WORD) {
break;
}
page += empty_bits;
const int continuous_bits = std::countr_one(word >> page);
if (!on_going && continuous_bits != 0) {
current_base = word_index * PAGES_PER_WORD + page;
on_going = true;
}
current_size += continuous_bits;
page += continuous_bits;
}
}
if (on_going && current_size > 0) {
InvokeModifiedRange(func, current_size, current_base);
}
}
template <typename Func>
void InvokeModifiedRange(Func&& func, u64 current_size, u64 current_base) {
const u64 current_size_bytes = current_size * BYTES_PER_PAGE;
const u64 offset_begin = current_base * BYTES_PER_PAGE;
const u64 offset_end = std::min(offset_begin + current_size_bytes, SizeBytes());
func(offset_begin, offset_end - offset_begin);
}
/**
* Returns true when a region has been modified
*
* @param offset Offset in bytes from the start of the buffer
* @param size Size in bytes of the region to query for modifications
*/
template <Type type>
[[nodiscard]] bool IsRegionModified(u64 offset, u64 size) const noexcept {
static_assert(type != Type::Untracked);
const u64* const untracked_words = Array<Type::Untracked>();
const u64* const state_words = Array<type>();
const u64 num_query_words = size / BYTES_PER_WORD + 1;
const u64 word_begin = offset / BYTES_PER_WORD;
const u64 word_end = std::min<u64>(word_begin + num_query_words, NumWords());
const u64 page_limit = Common::DivCeil(offset + size, BYTES_PER_PAGE);
u64 page_index = (offset / BYTES_PER_PAGE) % PAGES_PER_WORD;
for (u64 word_index = word_begin; word_index < word_end; ++word_index, page_index = 0) {
const u64 off_word = type == Type::GPU ? untracked_words[word_index] : 0;
const u64 word = state_words[word_index] & ~off_word;
if (word == 0) {
continue;
}
const u64 page_end = std::min((word_index + 1) * PAGES_PER_WORD, page_limit);
const u64 local_page_end = page_end % PAGES_PER_WORD;
const u64 page_end_shift = (PAGES_PER_WORD - local_page_end) % PAGES_PER_WORD;
if (((word >> page_index) << page_index) << page_end_shift != 0) {
return true;
}
}
return false;
}
/**
* Returns a begin end pair with the inclusive modified region
*
* @param offset Offset in bytes from the start of the buffer
* @param size Size in bytes of the region to query for modifications
*/
template <Type type>
[[nodiscard]] std::pair<u64, u64> ModifiedRegion(u64 offset, u64 size) const noexcept {
static_assert(type != Type::Untracked);
const u64* const untracked_words = Array<Type::Untracked>();
const u64* const state_words = Array<type>();
const u64 num_query_words = size / BYTES_PER_WORD + 1;
const u64 word_begin = offset / BYTES_PER_WORD;
const u64 word_end = std::min<u64>(word_begin + num_query_words, NumWords());
const u64 page_base = offset / BYTES_PER_PAGE;
const u64 page_limit = Common::DivCeil(offset + size, BYTES_PER_PAGE);
u64 begin = std::numeric_limits<u64>::max();
u64 end = 0;
for (u64 word_index = word_begin; word_index < word_end; ++word_index) {
const u64 off_word = type == Type::GPU ? untracked_words[word_index] : 0;
const u64 word = state_words[word_index] & ~off_word;
if (word == 0) {
continue;
}
const u64 local_page_begin = std::countr_zero(word);
const u64 local_page_end = PAGES_PER_WORD - std::countl_zero(word);
const u64 page_index = word_index * PAGES_PER_WORD;
const u64 page_begin = std::max(page_index + local_page_begin, page_base);
const u64 page_end = std::min(page_index + local_page_end, page_limit);
begin = std::min(begin, page_begin);
end = std::max(end, page_end);
}
static constexpr std::pair<u64, u64> EMPTY{0, 0};
return begin < end ? std::make_pair(begin * BYTES_PER_PAGE, end * BYTES_PER_PAGE) : EMPTY;
}
/// Returns the number of words of the buffer
[[nodiscard]] size_t NumWords() const noexcept {
return words.NumWords();
}
/// Returns true when the buffer fits in the small vector optimization
[[nodiscard]] bool IsShort() const noexcept {
return words.IsShort();
}
RasterizerInterface* rasterizer = nullptr;
VAddr cpu_addr = 0;
Words words;
WordManager<RasterizerInterface> word_manager;
BufferFlagBits flags{};
int stream_score = 0;
size_t lru_id = SIZE_MAX;

View file

@ -1,5 +1,5 @@
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include "common/microprofile.h"

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,581 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include <algorithm>
#include <array>
#include <functional>
#include <memory>
#include <mutex>
#include <numeric>
#include <span>
#include <unordered_map>
#include <vector>
#include <boost/container/small_vector.hpp>
#define BOOST_NO_MT
#include <boost/pool/detail/mutex.hpp>
#undef BOOST_NO_MT
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_base_set.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_map.hpp>
#include <boost/pool/pool.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/pool/poolfwd.hpp>
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "common/literals.h"
#include "common/lru_cache.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/buffer_cache/buffer_base.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/delayed_destruction_ring.h"
#include "video_core/dirty_flags.h"
#include "video_core/engines/draw_manager.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/slot_vector.h"
#include "video_core/texture_cache/types.h"
namespace boost {
template <typename T>
class fast_pool_allocator<T, default_user_allocator_new_delete, details::pool::null_mutex, 4096, 0>;
}
namespace VideoCommon {
MICROPROFILE_DECLARE(GPU_PrepareBuffers);
MICROPROFILE_DECLARE(GPU_BindUploadBuffers);
MICROPROFILE_DECLARE(GPU_DownloadMemory);
using BufferId = SlotId;
using VideoCore::Surface::PixelFormat;
using namespace Common::Literals;
constexpr u32 NUM_VERTEX_BUFFERS = 32;
constexpr u32 NUM_TRANSFORM_FEEDBACK_BUFFERS = 4;
constexpr u32 NUM_GRAPHICS_UNIFORM_BUFFERS = 18;
constexpr u32 NUM_COMPUTE_UNIFORM_BUFFERS = 8;
constexpr u32 NUM_STORAGE_BUFFERS = 16;
constexpr u32 NUM_TEXTURE_BUFFERS = 16;
constexpr u32 NUM_STAGES = 5;
using UniformBufferSizes = std::array<std::array<u32, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES>;
using ComputeUniformBufferSizes = std::array<u32, NUM_COMPUTE_UNIFORM_BUFFERS>;
enum class ObtainBufferSynchronize : u32 {
NoSynchronize = 0,
FullSynchronize = 1,
SynchronizeNoDirty = 2,
};
enum class ObtainBufferOperation : u32 {
DoNothing = 0,
MarkAsWritten = 1,
DiscardWrite = 2,
MarkQuery = 3,
};
template <typename P>
class BufferCache : public VideoCommon::ChannelSetupCaches<VideoCommon::ChannelInfo> {
// Page size for caching purposes.
// This is unrelated to the CPU page size and it can be changed as it seems optimal.
static constexpr u32 PAGE_BITS = 16;
static constexpr u64 PAGE_SIZE = u64{1} << PAGE_BITS;
static constexpr u32 CPU_PAGE_BITS = 12;
static constexpr u64 CPU_PAGE_SIZE = u64{1} << CPU_PAGE_BITS;
static constexpr bool IS_OPENGL = P::IS_OPENGL;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS =
P::HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS;
static constexpr bool HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT =
P::HAS_FULL_INDEX_AND_PRIMITIVE_SUPPORT;
static constexpr bool NEEDS_BIND_UNIFORM_INDEX = P::NEEDS_BIND_UNIFORM_INDEX;
static constexpr bool NEEDS_BIND_STORAGE_INDEX = P::NEEDS_BIND_STORAGE_INDEX;
static constexpr bool USE_MEMORY_MAPS = P::USE_MEMORY_MAPS;
static constexpr bool SEPARATE_IMAGE_BUFFERS_BINDINGS = P::SEPARATE_IMAGE_BUFFER_BINDINGS;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = P::IMPLEMENTS_ASYNC_DOWNLOADS;
static constexpr BufferId NULL_BUFFER_ID{0};
static constexpr s64 DEFAULT_EXPECTED_MEMORY = 512_MiB;
static constexpr s64 DEFAULT_CRITICAL_MEMORY = 1_GiB;
static constexpr s64 TARGET_THRESHOLD = 4_GiB;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using Runtime = typename P::Runtime;
using Buffer = typename P::Buffer;
using Async_Buffer = typename P::Async_Buffer;
using MemoryTracker = typename P::MemoryTracker;
using IntervalCompare = std::less<VAddr>;
using IntervalInstance = boost::icl::interval_type_default<VAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<VAddr>;
using IntervalSet = boost::icl::interval_set<VAddr>;
using IntervalType = typename IntervalSet::interval_type;
template <typename Type>
struct counter_add_functor : public boost::icl::identity_based_inplace_combine<Type> {
// types
typedef counter_add_functor<Type> type;
typedef boost::icl::identity_based_inplace_combine<Type> base_type;
// public member functions
void operator()(Type& current, const Type& added) const {
current += added;
if (current < base_type::identity_element()) {
current = base_type::identity_element();
}
}
// public static functions
static void version(Type&){};
};
using OverlapCombine = counter_add_functor<int>;
using OverlapSection = boost::icl::inter_section<int>;
using OverlapCounter = boost::icl::split_interval_map<VAddr, int>;
struct Empty {};
struct OverlapResult {
std::vector<BufferId> ids;
VAddr begin;
VAddr end;
bool has_stream_leap = false;
};
struct Binding {
VAddr cpu_addr{};
u32 size{};
BufferId buffer_id;
};
struct TextureBufferBinding : Binding {
PixelFormat format;
};
static constexpr Binding NULL_BINDING{
.cpu_addr = 0,
.size = 0,
.buffer_id = NULL_BUFFER_ID,
};
public:
static constexpr u32 DEFAULT_SKIP_CACHE_SIZE = static_cast<u32>(4_KiB);
explicit BufferCache(VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, Runtime& runtime_);
void TickFrame();
void WriteMemory(VAddr cpu_addr, u64 size);
void CachedWriteMemory(VAddr cpu_addr, u64 size);
void DownloadMemory(VAddr cpu_addr, u64 size);
bool InlineMemory(VAddr dest_address, size_t copy_size, std::span<const u8> inlined_buffer);
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size);
void DisableGraphicsUniformBuffer(size_t stage, u32 index);
void UpdateGraphicsBuffers(bool is_indexed);
void UpdateComputeBuffers();
void BindHostGeometryBuffers(bool is_indexed);
void BindHostStageBuffers(size_t stage);
void BindHostComputeBuffers();
void SetUniformBuffersState(const std::array<u32, NUM_STAGES>& mask,
const UniformBufferSizes* sizes);
void SetComputeUniformBufferState(u32 mask, const ComputeUniformBufferSizes* sizes);
void UnbindGraphicsStorageBuffers(size_t stage);
void BindGraphicsStorageBuffer(size_t stage, size_t ssbo_index, u32 cbuf_index, u32 cbuf_offset,
bool is_written);
void UnbindGraphicsTextureBuffers(size_t stage);
void BindGraphicsTextureBuffer(size_t stage, size_t tbo_index, GPUVAddr gpu_addr, u32 size,
PixelFormat format, bool is_written, bool is_image);
void UnbindComputeStorageBuffers();
void BindComputeStorageBuffer(size_t ssbo_index, u32 cbuf_index, u32 cbuf_offset,
bool is_written);
void UnbindComputeTextureBuffers();
void BindComputeTextureBuffer(size_t tbo_index, GPUVAddr gpu_addr, u32 size, PixelFormat format,
bool is_written, bool is_image);
[[nodiscard]] std::pair<Buffer*, u32> ObtainBuffer(GPUVAddr gpu_addr, u32 size,
ObtainBufferSynchronize sync_info,
ObtainBufferOperation post_op);
void FlushCachedWrites();
/// Return true when there are uncommitted buffers to be downloaded
[[nodiscard]] bool HasUncommittedFlushes() const noexcept;
void AccumulateFlushes();
/// Return true when the caller should wait for async downloads
[[nodiscard]] bool ShouldWaitAsyncFlushes() const noexcept;
/// Commit asynchronous downloads
void CommitAsyncFlushes();
void CommitAsyncFlushesHigh();
/// Pop asynchronous downloads
void PopAsyncFlushes();
void PopAsyncBuffers();
bool DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 amount);
bool DMAClear(GPUVAddr src_address, u64 amount, u32 value);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
/// Return true when a region is registered on the cache
[[nodiscard]] bool IsRegionRegistered(VAddr addr, size_t size);
/// Return true when a CPU region is modified from the CPU
[[nodiscard]] bool IsRegionCpuModified(VAddr addr, size_t size);
void SetDrawIndirect(
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect_) {
current_draw_indirect = current_draw_indirect_;
}
[[nodiscard]] std::pair<Buffer*, u32> GetDrawIndirectCount();
[[nodiscard]] std::pair<Buffer*, u32> GetDrawIndirectBuffer();
std::recursive_mutex mutex;
Runtime& runtime;
private:
template <typename Func>
static void ForEachEnabledBit(u32 enabled_mask, Func&& func) {
for (u32 index = 0; enabled_mask != 0; ++index, enabled_mask >>= 1) {
const int disabled_bits = std::countr_zero(enabled_mask);
index += disabled_bits;
enabled_mask >>= disabled_bits;
func(index);
}
}
template <typename Func>
void ForEachBufferInRange(VAddr cpu_addr, u64 size, Func&& func) {
const u64 page_end = Common::DivCeil(cpu_addr + size, PAGE_SIZE);
for (u64 page = cpu_addr >> PAGE_BITS; page < page_end;) {
const BufferId buffer_id = page_table[page];
if (!buffer_id) {
++page;
continue;
}
Buffer& buffer = slot_buffers[buffer_id];
func(buffer_id, buffer);
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, PAGE_SIZE);
}
}
template <typename Func>
void ForEachInRangeSet(IntervalSet& current_range, VAddr cpu_addr, u64 size, Func&& func) {
const VAddr start_address = cpu_addr;
const VAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
VAddr inter_addr_end = it->upper();
VAddr inter_addr = it->lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end);
}
}
template <typename Func>
void ForEachInOverlapCounter(OverlapCounter& current_range, VAddr cpu_addr, u64 size,
Func&& func) {
const VAddr start_address = cpu_addr;
const VAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
VAddr inter_addr_end = inter.upper();
VAddr inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end, it->second);
}
}
void RemoveEachInOverlapCounter(OverlapCounter& current_range,
const IntervalType search_interval, int subtract_value) {
bool any_removals = false;
current_range.add(std::make_pair(search_interval, subtract_value));
do {
any_removals = false;
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
if (it->second <= 0) {
any_removals = true;
current_range.erase(it);
break;
}
}
} while (any_removals);
}
static bool IsRangeGranular(VAddr cpu_addr, size_t size) {
return (cpu_addr & ~Core::Memory::YUZU_PAGEMASK) ==
((cpu_addr + size) & ~Core::Memory::YUZU_PAGEMASK);
}
void RunGarbageCollector();
void WaitOnAsyncFlushes(VAddr cpu_addr, u64 size);
void BindHostIndexBuffer();
void BindHostVertexBuffers();
void BindHostDrawIndirectBuffers();
void BindHostGraphicsUniformBuffers(size_t stage);
void BindHostGraphicsUniformBuffer(size_t stage, u32 index, u32 binding_index, bool needs_bind);
void BindHostGraphicsStorageBuffers(size_t stage);
void BindHostGraphicsTextureBuffers(size_t stage);
void BindHostTransformFeedbackBuffers();
void BindHostComputeUniformBuffers();
void BindHostComputeStorageBuffers();
void BindHostComputeTextureBuffers();
void DoUpdateGraphicsBuffers(bool is_indexed);
void DoUpdateComputeBuffers();
void UpdateIndexBuffer();
void UpdateVertexBuffers();
void UpdateVertexBuffer(u32 index);
void UpdateDrawIndirect();
void UpdateUniformBuffers(size_t stage);
void UpdateStorageBuffers(size_t stage);
void UpdateTextureBuffers(size_t stage);
void UpdateTransformFeedbackBuffers();
void UpdateTransformFeedbackBuffer(u32 index);
void UpdateComputeUniformBuffers();
void UpdateComputeStorageBuffers();
void UpdateComputeTextureBuffers();
void MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 size);
[[nodiscard]] BufferId FindBuffer(VAddr cpu_addr, u32 size);
[[nodiscard]] OverlapResult ResolveOverlaps(VAddr cpu_addr, u32 wanted_size);
void JoinOverlap(BufferId new_buffer_id, BufferId overlap_id, bool accumulate_stream_score);
[[nodiscard]] BufferId CreateBuffer(VAddr cpu_addr, u32 wanted_size);
void Register(BufferId buffer_id);
void Unregister(BufferId buffer_id);
template <bool insert>
void ChangeRegister(BufferId buffer_id);
void TouchBuffer(Buffer& buffer, BufferId buffer_id) noexcept;
bool SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBufferNoModified(Buffer& buffer, VAddr cpu_addr, u32 size);
void UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies);
void ImmediateUploadMemory(Buffer& buffer, u64 largest_copy,
std::span<const BufferCopy> copies);
void MappedUploadMemory(Buffer& buffer, u64 total_size_bytes, std::span<BufferCopy> copies);
void DownloadBufferMemory(Buffer& buffer_id);
void DownloadBufferMemory(Buffer& buffer_id, VAddr cpu_addr, u64 size);
void DeleteBuffer(BufferId buffer_id, bool do_not_mark = false);
void NotifyBufferDeletion();
[[nodiscard]] Binding StorageBufferBinding(GPUVAddr ssbo_addr, u32 cbuf_index,
bool is_written) const;
[[nodiscard]] TextureBufferBinding GetTextureBufferBinding(GPUVAddr gpu_addr, u32 size,
PixelFormat format);
[[nodiscard]] std::span<const u8> ImmediateBufferWithData(VAddr cpu_addr, size_t size);
[[nodiscard]] std::span<u8> ImmediateBuffer(size_t wanted_capacity);
[[nodiscard]] bool HasFastUniformBufferBound(size_t stage, u32 binding_index) const noexcept;
void ClearDownload(IntervalType subtract_interval);
VideoCore::RasterizerInterface& rasterizer;
Core::Memory::Memory& cpu_memory;
SlotVector<Buffer> slot_buffers;
DelayedDestructionRing<Buffer, 8> delayed_destruction_ring;
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect{};
u32 last_index_count = 0;
Binding index_buffer;
std::array<Binding, NUM_VERTEX_BUFFERS> vertex_buffers;
std::array<std::array<Binding, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES> uniform_buffers;
std::array<std::array<Binding, NUM_STORAGE_BUFFERS>, NUM_STAGES> storage_buffers;
std::array<std::array<TextureBufferBinding, NUM_TEXTURE_BUFFERS>, NUM_STAGES> texture_buffers;
std::array<Binding, NUM_TRANSFORM_FEEDBACK_BUFFERS> transform_feedback_buffers;
Binding count_buffer_binding;
Binding indirect_buffer_binding;
std::array<Binding, NUM_COMPUTE_UNIFORM_BUFFERS> compute_uniform_buffers;
std::array<Binding, NUM_STORAGE_BUFFERS> compute_storage_buffers;
std::array<TextureBufferBinding, NUM_TEXTURE_BUFFERS> compute_texture_buffers;
std::array<u32, NUM_STAGES> enabled_uniform_buffer_masks{};
u32 enabled_compute_uniform_buffer_mask = 0;
const UniformBufferSizes* uniform_buffer_sizes{};
const ComputeUniformBufferSizes* compute_uniform_buffer_sizes{};
std::array<u32, NUM_STAGES> enabled_storage_buffers{};
std::array<u32, NUM_STAGES> written_storage_buffers{};
u32 enabled_compute_storage_buffers = 0;
u32 written_compute_storage_buffers = 0;
std::array<u32, NUM_STAGES> enabled_texture_buffers{};
std::array<u32, NUM_STAGES> written_texture_buffers{};
std::array<u32, NUM_STAGES> image_texture_buffers{};
u32 enabled_compute_texture_buffers = 0;
u32 written_compute_texture_buffers = 0;
u32 image_compute_texture_buffers = 0;
std::array<u32, 16> uniform_cache_hits{};
std::array<u32, 16> uniform_cache_shots{};
u32 uniform_buffer_skip_cache_size = DEFAULT_SKIP_CACHE_SIZE;
bool has_deleted_buffers = false;
std::conditional_t<HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS, std::array<u32, NUM_STAGES>, Empty>
dirty_uniform_buffers{};
std::conditional_t<IS_OPENGL, std::array<u32, NUM_STAGES>, Empty> fast_bound_uniform_buffers{};
std::conditional_t<HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS,
std::array<std::array<u32, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES>, Empty>
uniform_buffer_binding_sizes{};
std::vector<BufferId> cached_write_buffer_ids;
MemoryTracker memory_tracker;
IntervalSet uncommitted_ranges;
IntervalSet common_ranges;
IntervalSet cached_ranges;
IntervalSet pending_ranges;
std::deque<IntervalSet> committed_ranges;
// Async Buffers
OverlapCounter async_downloads;
std::deque<std::optional<Async_Buffer>> async_buffers;
std::deque<boost::container::small_vector<BufferCopy, 4>> pending_downloads;
std::optional<Async_Buffer> current_buffer;
// queries
boost::container::small_vector<std::pair<VAddr, size_t>, 8> pending_queries;
std::deque<boost::container::small_vector<BufferCopy, 8>> committed_queries;
boost::container::small_vector<u64, 8> flushed_queries;
std::deque<std::optional<Async_Buffer>> query_async_buffers;
size_t immediate_buffer_capacity = 0;
Common::ScratchBuffer<u8> immediate_buffer_alloc;
struct LRUItemParams {
using ObjectType = BufferId;
using TickType = u64;
};
Common::LeastRecentlyUsedCache<LRUItemParams> lru_cache;
u64 frame_tick = 0;
u64 total_used_memory = 0;
u64 minimum_memory = 0;
u64 critical_memory = 0;
bool active_async_buffers = false;
std::array<BufferId, ((1ULL << 39) >> PAGE_BITS)> page_table;
};
} // namespace VideoCommon

View file

@ -0,0 +1,266 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include <algorithm>
#include <bit>
#include <deque>
#include <limits>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include "common/alignment.h"
#include "common/common_types.h"
#include "video_core/buffer_cache/word_manager.h"
namespace VideoCommon {
template <class RasterizerInterface>
class MemoryTrackerBase {
static constexpr size_t MAX_CPU_PAGE_BITS = 39;
static constexpr size_t HIGHER_PAGE_BITS = 22;
static constexpr size_t HIGHER_PAGE_SIZE = 1ULL << HIGHER_PAGE_BITS;
static constexpr size_t HIGHER_PAGE_MASK = HIGHER_PAGE_SIZE - 1ULL;
static constexpr size_t NUM_HIGH_PAGES = 1ULL << (MAX_CPU_PAGE_BITS - HIGHER_PAGE_BITS);
static constexpr size_t MANAGER_POOL_SIZE = 32;
static constexpr size_t WORDS_STACK_NEEDED = HIGHER_PAGE_SIZE / BYTES_PER_WORD;
using Manager = WordManager<RasterizerInterface, WORDS_STACK_NEEDED>;
public:
MemoryTrackerBase(RasterizerInterface& rasterizer_) : rasterizer{&rasterizer_} {}
~MemoryTrackerBase() = default;
/// Returns the inclusive CPU modified range in a begin end pair
[[nodiscard]] std::pair<u64, u64> ModifiedCpuRegion(VAddr query_cpu_addr,
u64 query_size) noexcept {
return IteratePairs<true>(
query_cpu_addr, query_size, [](Manager* manager, u64 offset, size_t size) {
return manager->template ModifiedRegion<Type::CPU>(offset, size);
});
}
/// Returns the inclusive GPU modified range in a begin end pair
[[nodiscard]] std::pair<u64, u64> ModifiedGpuRegion(VAddr query_cpu_addr,
u64 query_size) noexcept {
return IteratePairs<false>(
query_cpu_addr, query_size, [](Manager* manager, u64 offset, size_t size) {
return manager->template ModifiedRegion<Type::GPU>(offset, size);
});
}
/// Returns true if a region has been modified from the CPU
[[nodiscard]] bool IsRegionCpuModified(VAddr query_cpu_addr, u64 query_size) noexcept {
return IteratePages<true>(
query_cpu_addr, query_size, [](Manager* manager, u64 offset, size_t size) {
return manager->template IsRegionModified<Type::CPU>(offset, size);
});
}
/// Returns true if a region has been modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr query_cpu_addr, u64 query_size) noexcept {
return IteratePages<false>(
query_cpu_addr, query_size, [](Manager* manager, u64 offset, size_t size) {
return manager->template IsRegionModified<Type::GPU>(offset, size);
});
}
/// Mark region as CPU modified, notifying the rasterizer about this change
void MarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 query_size) {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
manager->template ChangeRegionState<Type::CPU, true>(
manager->GetCpuAddr() + offset, size);
});
}
/// Unmark region as CPU modified, notifying the rasterizer about this change
void UnmarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 query_size) {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
manager->template ChangeRegionState<Type::CPU, false>(
manager->GetCpuAddr() + offset, size);
});
}
/// Mark region as modified from the host GPU
void MarkRegionAsGpuModified(VAddr dirty_cpu_addr, u64 query_size) noexcept {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
manager->template ChangeRegionState<Type::GPU, true>(
manager->GetCpuAddr() + offset, size);
});
}
/// Unmark region as modified from the host GPU
void UnmarkRegionAsGpuModified(VAddr dirty_cpu_addr, u64 query_size) noexcept {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
manager->template ChangeRegionState<Type::GPU, false>(
manager->GetCpuAddr() + offset, size);
});
}
/// Mark region as modified from the CPU
/// but don't mark it as modified until FlusHCachedWrites is called.
void CachedCpuWrite(VAddr dirty_cpu_addr, u64 query_size) {
IteratePages<true>(
dirty_cpu_addr, query_size, [this](Manager* manager, u64 offset, size_t size) {
const VAddr cpu_address = manager->GetCpuAddr() + offset;
manager->template ChangeRegionState<Type::CachedCPU, true>(cpu_address, size);
cached_pages.insert(static_cast<u32>(cpu_address >> HIGHER_PAGE_BITS));
});
}
/// Flushes cached CPU writes, and notify the rasterizer about the deltas
void FlushCachedWrites(VAddr query_cpu_addr, u64 query_size) noexcept {
IteratePages<false>(query_cpu_addr, query_size,
[](Manager* manager, [[maybe_unused]] u64 offset,
[[maybe_unused]] size_t size) { manager->FlushCachedWrites(); });
}
void FlushCachedWrites() noexcept {
for (auto id : cached_pages) {
top_tier[id]->FlushCachedWrites();
}
cached_pages.clear();
}
/// Call 'func' for each CPU modified range and unmark those pages as CPU modified
template <typename Func>
void ForEachUploadRange(VAddr query_cpu_range, u64 query_size, Func&& func) {
IteratePages<true>(query_cpu_range, query_size,
[&func](Manager* manager, u64 offset, size_t size) {
manager->template ForEachModifiedRange<Type::CPU>(
manager->GetCpuAddr() + offset, size, true, func);
});
}
/// Call 'func' for each GPU modified range and unmark those pages as GPU modified
template <typename Func>
void ForEachDownloadRange(VAddr query_cpu_range, u64 query_size, bool clear, Func&& func) {
IteratePages<false>(query_cpu_range, query_size,
[&func, clear](Manager* manager, u64 offset, size_t size) {
manager->template ForEachModifiedRange<Type::GPU>(
manager->GetCpuAddr() + offset, size, clear, func);
});
}
template <typename Func>
void ForEachDownloadRangeAndClear(VAddr query_cpu_range, u64 query_size, Func&& func) {
IteratePages<false>(query_cpu_range, query_size,
[&func](Manager* manager, u64 offset, size_t size) {
manager->template ForEachModifiedRange<Type::GPU>(
manager->GetCpuAddr() + offset, size, true, func);
});
}
private:
template <bool create_region_on_fail, typename Func>
bool IteratePages(VAddr cpu_address, size_t size, Func&& func) {
using FuncReturn = typename std::invoke_result<Func, Manager*, u64, size_t>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
std::size_t remaining_size{size};
std::size_t page_index{cpu_address >> HIGHER_PAGE_BITS};
u64 page_offset{cpu_address & HIGHER_PAGE_MASK};
while (remaining_size > 0) {
const std::size_t copy_amount{std::min(HIGHER_PAGE_SIZE - page_offset, remaining_size)};
auto* manager{top_tier[page_index]};
if (manager) {
if constexpr (BOOL_BREAK) {
if (func(manager, page_offset, copy_amount)) {
return true;
}
} else {
func(manager, page_offset, copy_amount);
}
} else if constexpr (create_region_on_fail) {
CreateRegion(page_index);
manager = top_tier[page_index];
if constexpr (BOOL_BREAK) {
if (func(manager, page_offset, copy_amount)) {
return true;
}
} else {
func(manager, page_offset, copy_amount);
}
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
return false;
}
template <bool create_region_on_fail, typename Func>
std::pair<u64, u64> IteratePairs(VAddr cpu_address, size_t size, Func&& func) {
std::size_t remaining_size{size};
std::size_t page_index{cpu_address >> HIGHER_PAGE_BITS};
u64 page_offset{cpu_address & HIGHER_PAGE_MASK};
u64 begin = std::numeric_limits<u64>::max();
u64 end = 0;
while (remaining_size > 0) {
const std::size_t copy_amount{std::min(HIGHER_PAGE_SIZE - page_offset, remaining_size)};
auto* manager{top_tier[page_index]};
const auto execute = [&] {
auto [new_begin, new_end] = func(manager, page_offset, copy_amount);
if (new_begin != 0 || new_end != 0) {
const u64 base_address = page_index << HIGHER_PAGE_BITS;
begin = std::min(new_begin + base_address, begin);
end = std::max(new_end + base_address, end);
}
};
if (manager) {
execute();
} else if constexpr (create_region_on_fail) {
CreateRegion(page_index);
manager = top_tier[page_index];
execute();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
if (begin < end) {
return std::make_pair(begin, end);
} else {
return std::make_pair(0ULL, 0ULL);
}
}
void CreateRegion(std::size_t page_index) {
const VAddr base_cpu_addr = page_index << HIGHER_PAGE_BITS;
top_tier[page_index] = GetNewManager(base_cpu_addr);
}
Manager* GetNewManager(VAddr base_cpu_addess) {
const auto on_return = [&] {
auto* new_manager = free_managers.front();
new_manager->SetCpuAddress(base_cpu_addess);
free_managers.pop_front();
return new_manager;
};
if (!free_managers.empty()) {
return on_return();
}
manager_pool.emplace_back();
auto& last_pool = manager_pool.back();
for (size_t i = 0; i < MANAGER_POOL_SIZE; i++) {
new (&last_pool[i]) Manager(0, *rasterizer, HIGHER_PAGE_SIZE);
free_managers.push_back(&last_pool[i]);
}
return on_return();
}
std::deque<std::array<Manager, MANAGER_POOL_SIZE>> manager_pool;
std::deque<Manager*> free_managers;
std::array<Manager*, NUM_HIGH_PAGES> top_tier{};
std::unordered_set<u32> cached_pages;
RasterizerInterface* rasterizer = nullptr;
};
} // namespace VideoCommon

View file

@ -0,0 +1,476 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include <algorithm>
#include <bit>
#include <limits>
#include <utility>
#include "common/alignment.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "core/memory.h"
namespace VideoCommon {
constexpr u64 PAGES_PER_WORD = 64;
constexpr u64 BYTES_PER_PAGE = Core::Memory::YUZU_PAGESIZE;
constexpr u64 BYTES_PER_WORD = PAGES_PER_WORD * BYTES_PER_PAGE;
/// Vector tracking modified pages tightly packed with small vector optimization
template <size_t stack_words = 1>
union WordsArray {
/// Returns the pointer to the words state
[[nodiscard]] const u64* Pointer(bool is_short) const noexcept {
return is_short ? stack.data() : heap;
}
/// Returns the pointer to the words state
[[nodiscard]] u64* Pointer(bool is_short) noexcept {
return is_short ? stack.data() : heap;
}
std::array<u64, stack_words> stack{}; ///< Small buffers storage
u64* heap; ///< Not-small buffers pointer to the storage
};
template <size_t stack_words = 1>
struct Words {
explicit Words() = default;
explicit Words(u64 size_bytes_) : size_bytes{size_bytes_} {
if (IsShort()) {
cpu.stack.fill(~u64{0});
gpu.stack.fill(0);
cached_cpu.stack.fill(0);
untracked.stack.fill(~u64{0});
} else {
const size_t num_words = NumWords();
// Share allocation between CPU and GPU pages and set their default values
u64* const alloc = new u64[num_words * 4];
cpu.heap = alloc;
gpu.heap = alloc + num_words;
cached_cpu.heap = alloc + num_words * 2;
untracked.heap = alloc + num_words * 3;
std::fill_n(cpu.heap, num_words, ~u64{0});
std::fill_n(gpu.heap, num_words, 0);
std::fill_n(cached_cpu.heap, num_words, 0);
std::fill_n(untracked.heap, num_words, ~u64{0});
}
// Clean up tailing bits
const u64 last_word_size = size_bytes % BYTES_PER_WORD;
const u64 last_local_page = Common::DivCeil(last_word_size, BYTES_PER_PAGE);
const u64 shift = (PAGES_PER_WORD - last_local_page) % PAGES_PER_WORD;
const u64 last_word = (~u64{0} << shift) >> shift;
cpu.Pointer(IsShort())[NumWords() - 1] = last_word;
untracked.Pointer(IsShort())[NumWords() - 1] = last_word;
}
~Words() {
Release();
}
Words& operator=(Words&& rhs) noexcept {
Release();
size_bytes = rhs.size_bytes;
cpu = rhs.cpu;
gpu = rhs.gpu;
cached_cpu = rhs.cached_cpu;
untracked = rhs.untracked;
rhs.cpu.heap = nullptr;
return *this;
}
Words(Words&& rhs) noexcept
: size_bytes{rhs.size_bytes}, cpu{rhs.cpu}, gpu{rhs.gpu},
cached_cpu{rhs.cached_cpu}, untracked{rhs.untracked} {
rhs.cpu.heap = nullptr;
}
Words& operator=(const Words&) = delete;
Words(const Words&) = delete;
/// Returns true when the buffer fits in the small vector optimization
[[nodiscard]] bool IsShort() const noexcept {
return size_bytes <= stack_words * BYTES_PER_WORD;
}
/// Returns the number of words of the buffer
[[nodiscard]] size_t NumWords() const noexcept {
return Common::DivCeil(size_bytes, BYTES_PER_WORD);
}
/// Release buffer resources
void Release() {
if (!IsShort()) {
// CPU written words is the base for the heap allocation
delete[] cpu.heap;
}
}
u64 size_bytes = 0;
WordsArray<stack_words> cpu;
WordsArray<stack_words> gpu;
WordsArray<stack_words> cached_cpu;
WordsArray<stack_words> untracked;
};
enum class Type {
CPU,
GPU,
CachedCPU,
Untracked,
};
template <class RasterizerInterface, size_t stack_words = 1>
class WordManager {
public:
explicit WordManager(VAddr cpu_addr_, RasterizerInterface& rasterizer_, u64 size_bytes)
: cpu_addr{cpu_addr_}, rasterizer{&rasterizer_}, words{size_bytes} {}
explicit WordManager() = default;
void SetCpuAddress(VAddr new_cpu_addr) {
cpu_addr = new_cpu_addr;
}
VAddr GetCpuAddr() const {
return cpu_addr;
}
/**
* Change the state of a range of pages
*
* @param dirty_addr Base address to mark or unmark as modified
* @param size Size in bytes to mark or unmark as modified
*/
template <Type type, bool enable>
void ChangeRegionState(u64 dirty_addr, s64 size) noexcept(type == Type::GPU) {
const s64 difference = dirty_addr - cpu_addr;
const u64 offset = std::max<s64>(difference, 0);
size += std::min<s64>(difference, 0);
if (offset >= SizeBytes() || size < 0) {
return;
}
u64* const untracked_words = Array<Type::Untracked>();
u64* const state_words = Array<type>();
const u64 offset_end = std::min(offset + size, SizeBytes());
const u64 begin_page_index = offset / BYTES_PER_PAGE;
const u64 begin_word_index = begin_page_index / PAGES_PER_WORD;
const u64 end_page_index = Common::DivCeil(offset_end, BYTES_PER_PAGE);
const u64 end_word_index = Common::DivCeil(end_page_index, PAGES_PER_WORD);
u64 page_index = begin_page_index % PAGES_PER_WORD;
u64 word_index = begin_word_index;
while (word_index < end_word_index) {
const u64 next_word_first_page = (word_index + 1) * PAGES_PER_WORD;
const u64 left_offset =
std::min(next_word_first_page - end_page_index, PAGES_PER_WORD) % PAGES_PER_WORD;
const u64 right_offset = page_index;
u64 bits = ~u64{0};
bits = (bits >> right_offset) << right_offset;
bits = (bits << left_offset) >> left_offset;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
NotifyRasterizer<!enable>(word_index, untracked_words[word_index], bits);
}
if constexpr (enable) {
state_words[word_index] |= bits;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
untracked_words[word_index] |= bits;
}
} else {
state_words[word_index] &= ~bits;
if constexpr (type == Type::CPU || type == Type::CachedCPU) {
untracked_words[word_index] &= ~bits;
}
}
page_index = 0;
++word_index;
}
}
/**
* Loop over each page in the given range, turn off those bits and notify the rasterizer if
* needed. Call the given function on each turned off range.
*
* @param query_cpu_range Base CPU address to loop over
* @param size Size in bytes of the CPU range to loop over
* @param func Function to call for each turned off region
*/
template <Type type, typename Func>
void ForEachModifiedRange(VAddr query_cpu_range, s64 size, bool clear, Func&& func) {
static_assert(type != Type::Untracked);
const s64 difference = query_cpu_range - cpu_addr;
const u64 query_begin = std::max<s64>(difference, 0);
size += std::min<s64>(difference, 0);
if (query_begin >= SizeBytes() || size < 0) {
return;
}
[[maybe_unused]] u64* const untracked_words = Array<Type::Untracked>();
[[maybe_unused]] u64* const cpu_words = Array<Type::CPU>();
u64* const state_words = Array<type>();
const u64 query_end = query_begin + std::min(static_cast<u64>(size), SizeBytes());
u64* const words_begin = state_words + query_begin / BYTES_PER_WORD;
u64* const words_end = state_words + Common::DivCeil(query_end, BYTES_PER_WORD);
u64 first_page = (query_begin / BYTES_PER_PAGE) % PAGES_PER_WORD;
const auto modified = [](u64 word) { return word != 0; };
const auto first_modified_word = std::find_if(words_begin, words_end, modified);
if (first_modified_word == words_end) {
// Exit early when the buffer is not modified
return;
}
if (first_modified_word != words_begin) {
first_page = 0;
}
std::reverse_iterator<u64*> first_word_reverse(first_modified_word);
std::reverse_iterator<u64*> last_word_iterator(words_end);
auto last_word_result = std::find_if(last_word_iterator, first_word_reverse, modified);
u64* const last_modified_word = &(*last_word_result) + 1;
const u64 word_index_begin = std::distance(state_words, first_modified_word);
const u64 word_index_end = std::distance(state_words, last_modified_word);
const unsigned local_page_begin = std::countr_zero(*first_modified_word);
const unsigned local_page_end =
static_cast<unsigned>(PAGES_PER_WORD) - std::countl_zero(last_modified_word[-1]);
const u64 word_page_begin = word_index_begin * PAGES_PER_WORD;
const u64 word_page_end = (word_index_end - 1) * PAGES_PER_WORD;
const u64 query_page_begin = query_begin / BYTES_PER_PAGE;
const u64 query_page_end = Common::DivCeil(query_end, BYTES_PER_PAGE);
const u64 page_index_begin = std::max(word_page_begin + local_page_begin, query_page_begin);
const u64 page_index_end = std::min(word_page_end + local_page_end, query_page_end);
const u64 first_word_page_begin = page_index_begin % PAGES_PER_WORD;
const u64 last_word_page_end = (page_index_end - 1) % PAGES_PER_WORD + 1;
u64 page_begin = std::max(first_word_page_begin, first_page);
u64 current_base = 0;
u64 current_size = 0;
bool on_going = false;
for (u64 word_index = word_index_begin; word_index < word_index_end; ++word_index) {
const bool is_last_word = word_index + 1 == word_index_end;
const u64 page_end = is_last_word ? last_word_page_end : PAGES_PER_WORD;
const u64 right_offset = page_begin;
const u64 left_offset = PAGES_PER_WORD - page_end;
u64 bits = ~u64{0};
bits = (bits >> right_offset) << right_offset;
bits = (bits << left_offset) >> left_offset;
const u64 current_word = state_words[word_index] & bits;
if (clear) {
state_words[word_index] &= ~bits;
}
if constexpr (type == Type::CachedCPU) {
NotifyRasterizer<false>(word_index, untracked_words[word_index], current_word);
untracked_words[word_index] |= current_word;
cpu_words[word_index] |= current_word;
}
if constexpr (type == Type::CPU) {
const u64 current_bits = untracked_words[word_index] & bits;
untracked_words[word_index] &= ~bits;
NotifyRasterizer<true>(word_index, current_bits, ~u64{0});
}
const u64 word = current_word & ~(type == Type::GPU ? untracked_words[word_index] : 0);
u64 page = page_begin;
page_begin = 0;
while (page < page_end) {
const int empty_bits = std::countr_zero(word >> page);
if (on_going && empty_bits != 0) {
InvokeModifiedRange(func, current_size, current_base);
current_size = 0;
on_going = false;
}
if (empty_bits == PAGES_PER_WORD) {
break;
}
page += empty_bits;
const int continuous_bits = std::countr_one(word >> page);
if (!on_going && continuous_bits != 0) {
current_base = word_index * PAGES_PER_WORD + page;
on_going = true;
}
current_size += continuous_bits;
page += continuous_bits;
}
}
if (on_going && current_size > 0) {
InvokeModifiedRange(func, current_size, current_base);
}
}
template <typename Func>
void InvokeModifiedRange(Func&& func, u64 current_size, u64 current_base) {
const u64 current_size_bytes = current_size * BYTES_PER_PAGE;
const u64 offset_begin = current_base * BYTES_PER_PAGE;
const u64 offset_end = std::min(offset_begin + current_size_bytes, SizeBytes());
func(cpu_addr + offset_begin, offset_end - offset_begin);
}
/**
* Returns true when a region has been modified
*
* @param offset Offset in bytes from the start of the buffer
* @param size Size in bytes of the region to query for modifications
*/
template <Type type>
[[nodiscard]] bool IsRegionModified(u64 offset, u64 size) const noexcept {
static_assert(type != Type::Untracked);
const u64* const untracked_words = Array<Type::Untracked>();
const u64* const state_words = Array<type>();
const u64 num_query_words = size / BYTES_PER_WORD + 1;
const u64 word_begin = offset / BYTES_PER_WORD;
const u64 word_end = std::min(word_begin + num_query_words, NumWords());
const u64 page_limit = Common::DivCeil(offset + size, BYTES_PER_PAGE);
u64 page_index = (offset / BYTES_PER_PAGE) % PAGES_PER_WORD;
for (u64 word_index = word_begin; word_index < word_end; ++word_index, page_index = 0) {
const u64 off_word = type == Type::GPU ? untracked_words[word_index] : 0;
const u64 word = state_words[word_index] & ~off_word;
if (word == 0) {
continue;
}
const u64 page_end = std::min((word_index + 1) * PAGES_PER_WORD, page_limit);
const u64 local_page_end = page_end % PAGES_PER_WORD;
const u64 page_end_shift = (PAGES_PER_WORD - local_page_end) % PAGES_PER_WORD;
if (((word >> page_index) << page_index) << page_end_shift != 0) {
return true;
}
}
return false;
}
/**
* Returns a begin end pair with the inclusive modified region
*
* @param offset Offset in bytes from the start of the buffer
* @param size Size in bytes of the region to query for modifications
*/
template <Type type>
[[nodiscard]] std::pair<u64, u64> ModifiedRegion(u64 offset, u64 size) const noexcept {
static_assert(type != Type::Untracked);
const u64* const state_words = Array<type>();
const u64 num_query_words = size / BYTES_PER_WORD + 1;
const u64 word_begin = offset / BYTES_PER_WORD;
const u64 word_end = std::min(word_begin + num_query_words, NumWords());
const u64 page_base = offset / BYTES_PER_PAGE;
u64 page_begin = page_base & (PAGES_PER_WORD - 1);
u64 page_end =
Common::DivCeil(offset + size, BYTES_PER_PAGE) - (page_base & ~(PAGES_PER_WORD - 1));
u64 begin = std::numeric_limits<u64>::max();
u64 end = 0;
for (u64 word_index = word_begin; word_index < word_end; ++word_index) {
const u64 base_mask = (1ULL << page_begin) - 1ULL;
const u64 end_mask = page_end >= PAGES_PER_WORD ? 0ULL : ~((1ULL << page_end) - 1ULL);
const u64 off_word = end_mask | base_mask;
const u64 word = state_words[word_index] & ~off_word;
if (word == 0) {
page_begin = 0;
page_end -= PAGES_PER_WORD;
continue;
}
const u64 local_page_begin = std::countr_zero(word);
const u64 local_page_end = PAGES_PER_WORD - std::countl_zero(word);
const u64 page_index = word_index * PAGES_PER_WORD;
begin = std::min(begin, page_index + local_page_begin);
end = page_index + local_page_end;
page_begin = 0;
page_end -= PAGES_PER_WORD;
}
static constexpr std::pair<u64, u64> EMPTY{0, 0};
return begin < end ? std::make_pair(begin * BYTES_PER_PAGE, end * BYTES_PER_PAGE) : EMPTY;
}
/// Returns the number of words of the manager
[[nodiscard]] size_t NumWords() const noexcept {
return words.NumWords();
}
/// Returns the size in bytes of the manager
[[nodiscard]] u64 SizeBytes() const noexcept {
return words.size_bytes;
}
/// Returns true when the buffer fits in the small vector optimization
[[nodiscard]] bool IsShort() const noexcept {
return words.IsShort();
}
void FlushCachedWrites() noexcept {
const u64 num_words = NumWords();
u64* const cached_words = Array<Type::CachedCPU>();
u64* const untracked_words = Array<Type::Untracked>();
u64* const cpu_words = Array<Type::CPU>();
for (u64 word_index = 0; word_index < num_words; ++word_index) {
const u64 cached_bits = cached_words[word_index];
NotifyRasterizer<false>(word_index, untracked_words[word_index], cached_bits);
untracked_words[word_index] |= cached_bits;
cpu_words[word_index] |= cached_bits;
cached_words[word_index] = 0;
}
}
private:
template <Type type>
u64* Array() noexcept {
if constexpr (type == Type::CPU) {
return words.cpu.Pointer(IsShort());
} else if constexpr (type == Type::GPU) {
return words.gpu.Pointer(IsShort());
} else if constexpr (type == Type::CachedCPU) {
return words.cached_cpu.Pointer(IsShort());
} else if constexpr (type == Type::Untracked) {
return words.untracked.Pointer(IsShort());
}
}
template <Type type>
const u64* Array() const noexcept {
if constexpr (type == Type::CPU) {
return words.cpu.Pointer(IsShort());
} else if constexpr (type == Type::GPU) {
return words.gpu.Pointer(IsShort());
} else if constexpr (type == Type::CachedCPU) {
return words.cached_cpu.Pointer(IsShort());
} else if constexpr (type == Type::Untracked) {
return words.untracked.Pointer(IsShort());
}
}
/**
* Notify rasterizer about changes in the CPU tracking state of a word in the buffer
*
* @param word_index Index to the word to notify to the rasterizer
* @param current_bits Current state of the word
* @param new_bits New state of the word
*
* @tparam add_to_rasterizer True when the rasterizer should start tracking the new pages
*/
template <bool add_to_rasterizer>
void NotifyRasterizer(u64 word_index, u64 current_bits, u64 new_bits) const {
u64 changed_bits = (add_to_rasterizer ? current_bits : ~current_bits) & new_bits;
VAddr addr = cpu_addr + word_index * BYTES_PER_WORD;
while (changed_bits != 0) {
const int empty_bits = std::countr_zero(changed_bits);
addr += empty_bits * BYTES_PER_PAGE;
changed_bits >>= empty_bits;
const u32 continuous_bits = std::countr_one(changed_bits);
const u64 size = continuous_bits * BYTES_PER_PAGE;
const VAddr begin_addr = addr;
addr += size;
changed_bits = continuous_bits < PAGES_PER_WORD ? (changed_bits >> continuous_bits) : 0;
rasterizer->UpdatePagesCachedCount(begin_addr, size, add_to_rasterizer ? 1 : -1);
}
}
VAddr cpu_addr = 0;
RasterizerInterface* rasterizer = nullptr;
Words<stack_words> words;
};
} // namespace VideoCommon

View file

@ -267,7 +267,7 @@ size_t Maxwell3D::EstimateIndexBufferSize() {
std::numeric_limits<u16>::max(),
std::numeric_limits<u32>::max()};
const size_t byte_size = regs.index_buffer.FormatSizeInBytes();
const size_t log2_byte_size = Common::Log2Floor64(byte_size);
const size_t log2_byte_size = Common::Log2Ceil64(byte_size);
return std::min<size_t>(
memory_manager.GetMemoryLayoutSize(start_address, byte_size * max_sizes[log2_byte_size]) /
byte_size,

View file

@ -193,17 +193,17 @@ struct GPU::Impl {
[[nodiscard]] u64 GetTicks() const {
// This values were reversed engineered by fincs from NVN
// The gpu clock is reported in units of 385/625 nanoseconds
constexpr u64 gpu_ticks_num = 384;
constexpr u64 gpu_ticks_den = 625;
// The GPU clock is 614.4 MHz
using NsToGPUTickRatio = std::ratio<614'400'000, std::nano::den>;
static_assert(NsToGPUTickRatio::num == 384 && NsToGPUTickRatio::den == 625);
u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count();
u64 nanoseconds = system.CoreTiming().GetCPUTimeNs().count();
if (Settings::values.use_fast_gpu_time.GetValue()) {
nanoseconds /= 256;
}
const u64 nanoseconds_num = nanoseconds / gpu_ticks_den;
const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den;
return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den;
return nanoseconds * NsToGPUTickRatio::num / NsToGPUTickRatio::den;
}
[[nodiscard]] bool IsAsync() const {

View file

@ -8,6 +8,7 @@
#include "common/common_types.h"
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/buffer_cache/memory_tracker_base.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
@ -200,6 +201,8 @@ private:
struct BufferCacheParams {
using Runtime = OpenGL::BufferCacheRuntime;
using Buffer = OpenGL::Buffer;
using Async_Buffer = u32;
using MemoryTracker = VideoCommon::MemoryTrackerBase<VideoCore::RasterizerInterface>;
static constexpr bool IS_OPENGL = true;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS = true;
@ -208,6 +211,7 @@ struct BufferCacheParams {
static constexpr bool NEEDS_BIND_STORAGE_INDEX = true;
static constexpr bool USE_MEMORY_MAPS = false;
static constexpr bool SEPARATE_IMAGE_BUFFER_BINDINGS = true;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = false;
};
using BufferCache = VideoCommon::BufferCache<BufferCacheParams>;

View file

@ -0,0 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_opengl/gl_buffer_cache.h"
namespace VideoCommon {
template class VideoCommon::BufferCache<OpenGL::BufferCacheParams>;
}

View file

@ -314,8 +314,12 @@ StagingBufferRef BufferCacheRuntime::UploadStagingBuffer(size_t size) {
return staging_pool.Request(size, MemoryUsage::Upload);
}
StagingBufferRef BufferCacheRuntime::DownloadStagingBuffer(size_t size) {
return staging_pool.Request(size, MemoryUsage::Download);
StagingBufferRef BufferCacheRuntime::DownloadStagingBuffer(size_t size, bool deferred) {
return staging_pool.Request(size, MemoryUsage::Download, deferred);
}
void BufferCacheRuntime::FreeDeferredStagingBuffer(StagingBufferRef& ref) {
staging_pool.FreeDeferred(ref);
}
u64 BufferCacheRuntime::GetDeviceLocalMemory() const {

View file

@ -3,7 +3,8 @@
#pragma once
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/buffer_cache/buffer_cache_base.h"
#include "video_core/buffer_cache/memory_tracker_base.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
@ -75,7 +76,9 @@ public:
[[nodiscard]] StagingBufferRef UploadStagingBuffer(size_t size);
[[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size);
[[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size, bool deferred = false);
void FreeDeferredStagingBuffer(StagingBufferRef& ref);
void PreCopyBarrier();
@ -142,6 +145,8 @@ private:
struct BufferCacheParams {
using Runtime = Vulkan::BufferCacheRuntime;
using Buffer = Vulkan::Buffer;
using Async_Buffer = Vulkan::StagingBufferRef;
using MemoryTracker = VideoCommon::MemoryTrackerBase<VideoCore::RasterizerInterface>;
static constexpr bool IS_OPENGL = false;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS = false;
@ -150,6 +155,7 @@ struct BufferCacheParams {
static constexpr bool NEEDS_BIND_STORAGE_INDEX = false;
static constexpr bool USE_MEMORY_MAPS = true;
static constexpr bool SEPARATE_IMAGE_BUFFER_BINDINGS = false;
static constexpr bool IMPLEMENTS_ASYNC_DOWNLOADS = true;
};
using BufferCache = VideoCommon::BufferCache<BufferCacheParams>;

View file

@ -0,0 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
namespace VideoCommon {
template class VideoCommon::BufferCache<Vulkan::BufferCacheParams>;
}

View file

@ -4,6 +4,7 @@
#pragma once
#include <unordered_set>
#include <boost/container/small_vector.hpp>
#include "common/alignment.h"
#include "common/settings.h"
@ -17,15 +18,10 @@
namespace VideoCommon {
using Tegra::Texture::SwizzleSource;
using Tegra::Texture::TextureType;
using Tegra::Texture::TICEntry;
using Tegra::Texture::TSCEntry;
using VideoCore::Surface::GetFormatType;
using VideoCore::Surface::IsCopyCompatible;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using VideoCore::Surface::SurfaceType;
using namespace Common::Literals;
@ -674,7 +670,8 @@ void TextureCache<P>::CommitAsyncFlushes() {
bool any_none_dma = false;
for (PendingDownload& download_info : download_ids) {
if (download_info.is_swizzle) {
total_size_bytes += slot_images[download_info.object_id].unswizzled_size_bytes;
total_size_bytes +=
Common::AlignUp(slot_images[download_info.object_id].unswizzled_size_bytes, 64);
any_none_dma = true;
download_info.async_buffer_id = last_async_buffer_id;
}
@ -868,12 +865,16 @@ std::pair<typename TextureCache<P>::Image*, BufferImageCopy> TextureCache<P>::Dm
}
template <class P>
void TextureCache<P>::DownloadImageIntoBuffer(
typename TextureCache<P>::Image* image, typename TextureCache<P>::BufferType buffer,
size_t buffer_offset, std::span<const VideoCommon::BufferImageCopy> copies, GPUVAddr address, size_t size) {
void TextureCache<P>::DownloadImageIntoBuffer(typename TextureCache<P>::Image* image,
typename TextureCache<P>::BufferType buffer,
size_t buffer_offset,
std::span<const VideoCommon::BufferImageCopy> copies,
GPUVAddr address, size_t size) {
if constexpr (IMPLEMENTS_ASYNC_DOWNLOADS) {
auto slot = slot_buffer_downloads.insert(address, size);
uncommitted_downloads.emplace_back(false, uncommitted_async_buffers.size(), slot);
const BufferDownload new_buffer_download{address, size};
auto slot = slot_buffer_downloads.insert(new_buffer_download);
const PendingDownload new_download{false, uncommitted_async_buffers.size(), slot};
uncommitted_downloads.emplace_back(new_download);
auto download_map = runtime.DownloadStagingBuffer(size, true);
uncommitted_async_buffers.emplace_back(download_map);
std::array buffers{
@ -2269,7 +2270,8 @@ void TextureCache<P>::BindRenderTarget(ImageViewId* old_id, ImageViewId new_id)
if (new_id) {
const ImageViewBase& old_view = slot_image_views[new_id];
if (True(old_view.flags & ImageViewFlagBits::PreemtiveDownload)) {
uncommitted_downloads.emplace_back(true, 0, old_view.image_id);
const PendingDownload new_download{true, 0, old_view.image_id};
uncommitted_downloads.emplace_back(new_download);
}
}
*old_id = new_id;

View file

@ -40,14 +40,9 @@ struct ChannelState;
namespace VideoCommon {
using Tegra::Texture::SwizzleSource;
using Tegra::Texture::TICEntry;
using Tegra::Texture::TSCEntry;
using VideoCore::Surface::GetFormatType;
using VideoCore::Surface::IsCopyCompatible;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using namespace Common::Literals;
struct ImageViewInOut {